

Study Manual for SOA Exam P
 $1^{\text {st }}$ Edition $2^{\text {nd }}$ Printing by
 Samuel Broverman, Ph.D., ASA

ACTEX Learning
 Learn Today. Lead Tomorrow.

Actuarial © Financial Risk Resource Materials

Since 1972

Copyright © 2023, ACTEX Learning, a division of ArchiMedia Advantage Inc. Printed in the United States of America.

No portion of this ACTEX Study Manual may be reproduced or transmitted in any part or by any means without the permission of the publisher.

$\overline{\bar{n}}$ Welcome to Actuarial University

Actuarial University is a reimagined platform built around a more simplified way to study. It combines all the products you use to study into one interactive learning center.

You can find integrated topics using this network icon. When this icon appears, it will be next to an important topic in the manual. Click the link in your digital manual, or search the underlined topic in your print manual.

1. Login to: www.actuarialuniversity.com
2. Locate the Topic Search on your exam dashboard and enter the word or phrase into the search field, selecting the best match.
3. A topic "Hub" will display a list of integrated products that offer more ways to study the material.
4. Here is an example of the topic Pareto Distribution:

Pareto Distribution x
The (Type II) Pareto distribution with parameters $\alpha, \beta>0$ has pdf

$$
f(x)=\frac{\alpha \beta^{\alpha}}{(x+\beta)^{\alpha+1}}, \quad x>0
$$

and cdf

$$
F_{P}(x)=1-\left(\frac{\beta}{x+\beta}\right)^{\alpha}, \quad x>0
$$

If X is Type II Pareto with parameters α, β, then

$$
E[X]=\frac{\beta}{\alpha-1} \text { if } \alpha>1
$$

and

$$
\operatorname{Var}[X]=\frac{\alpha \beta^{2}}{\alpha-2}-\left(\frac{\alpha \beta}{\alpha-1}\right)^{2} \text { if } \alpha>2
$$

```
ACTEX Manual for \(P\)
```

Probability for Risk Management, 3rd Edition

GOAL for SRM

ASM Manual for IFM

Within the Hub there will be unlocked and locked products.

Unlocked Products are the products that you own.

ACTEX Manual for \mathbf{P}

\rightarrow

Locked Products are products that you do not own, and are available for purchase.

Probability for Risk Management, 3rd Edition

Many of Actuarial University's features are already unlocked with your study program, including:

Instructional Videos*
Topic Search

Planner
 Formula \& Review Sheet

Make your study session more efficient with our Planner!

Practice. Quiz. Test. Pass!

- 16,000+ Exam-Style Problems
- Detailed Solutions
- Adaptive Quizzes
- 3 Learning Modes
- 3 Difficulty Modes

Free with your ACTEX or ASM Interactive Study Manual

Available for P, FM, FAM, FAM-L, FAM-S, ALTAM, ASTAM, MAS-I, MAS-II, CAS 5, CAS 6U \& CAS 6C

Prepare for your exam confidently with GOAL custom Practice Sessions, Quizzes, \& Simulated Exams

Track your exam readiness with GOAL Score!

Available for P, FM, FAM, FAM-L, FAM-S, ALTAM, ASTAM, MAS-I, and MAS-II

GOAL Score tracks your performance through GOAL Practice Sessions, Quizzes, and Exams, resulting in an aggregate weighted score that gauges your exam preparedness.

By measuring both your performance, and the consistency of your performance, GOAL Score produces a reliable number that will give you confidence in your preparation before you sit for your exam.

Contents

Introductory Comments xv
Section 0 Review of Algebra and Calculus 1
0.1 Set Theory 1
0.2 Graphing an Inequality in Two Dimensions 9
0.3 Properties of Functions 10
0.4 Limits and Continuity 14
0.5 Differentiation 15
0.6 Integration 18
0.7 Geometric and Arithmetic Progressions 23
0.8 Double Summation 24
0.9 Problem Set 0 29
Section 1 Basic Probability Concepts 41
1.1 Probability Spaces and Events 41
1.2 Probability 44
1.3 Problem Set 1 52
Section 2 Conditional Probability and Independence 59
2.1 Definition of Conditional Probability 59
2.2 Bayes' Rule, Bayes' Theorem and the Law of Total Probability 62
2.3 Independent Events 68
2.4 Problem Set 2 74
Section 3 Combinatorial Principles 97
3.1 Permutations and Combinations 97
3.2 Problem Set 3 103
Section 4 Random Variables and Probability Distributions 113
4.1 Discrete Random Variable 113
4.2 Continuous Random Variable 115
4.3 Mixed Distribution 117
4.4 Cumulative Distribution Function 118
4.5 Examples of Probability, Density and Distribution functions 119
4.6 Additional Properties of Random Variables 123
$4.7 \quad$ Problem Set 4 130
Section 5 Expectation and Other Distribution Parameters 137
5.1 Expected Value of a Random Variable 137
5.2 Moments of a Random Variable 139
5.3 Variance and Standard Deviation 140
5.4 Percentiles, Median and Mode 143
5.5 Additional Relationships Involving Distribution Moments 145
5.6 Problem Set 5 154
Section 6 Frequently Used Discrete Distributions 165
6.1 Discrete Uniform Distribution 165
6.2 Binomial Distribution 166
$6.3 \quad$ Poisson Distribution 170
6.4 Geometric Distribution 173
6.5 Negative Binomial Distribution 175
6.6 Hypergeometric Distribution 179
6.7 Multinomial Distribution 180
6.8 Recursive Relationships for the Binomial, Poisson and Negative Binomial Distributions 181
6.9 Summary of Discrete Distributions 182
6.10 Problem Set 6 183
Section 7 Frequently Used Continuous Distributions 199
$7.1 \quad$ Continuous Uniform Distribution 199
7.2 Normal Distribution 200
7.3 Approximating a Distribution Using a Normal Distribution 203
7.4 Lognormal Distribution 206
7.5 Exponential Distribution 208
7.6 Gamma Distribution 212
7.7 Beta Distribution 215
7.8 Summary of Continuous Distributions 217
$7.9 \quad$ Problem Set 7 218
Section 8 Joint, Marginal, and Conditional Distributions 229
8.1 Definition of Joint Distribution 229
8.2 Expectation of a Function of Jointly Distributed Random Variables 231
8.3 Marginal Distributions 232
8.4 Independence of Random Variables 233
8.5 Conditional Distributions 233
8.6 Covariance and Correlation Between Random Variables 235
8.7 Additional Relationships Related to Joint Distributions 236
$8.8 \quad$ Problem Set 8 239
Section 9 Sums of Random Variables and Order Statistics 247
9.1 Distribution of a Sum of Random Variables 247
$9.2 \quad$ Order Statistics 252
9.3 Mixtures of Distributions 256
$9.4 \quad$ Problem Set 9 259
Section 10 Risk Management Concepts 273
10.1 Loss Distributions and Insurance 273
10.2 Partial Insurance Coverage 274
10.3 Models For Describing a Loss Random Variable X 281
10.4 Models For Aggregate Losses From a Portfolio of Insurance Policies 283
10.5 Problem Set 10 290
TABLE FOR THE NORMAL DISTRIBUTION 315
PRACTICE EXAM 1 319
PRACTICE EXAM 2 337
PRACTICE EXAM 3 353
PRACTICE EXAM 4 371
PRACTICE EXAM 5 387
PRACTICE EXAM 6 403
PRACTICE EXAM 7 421
PRACTICE EXAM 8 441
PRACTICE EXAM 9 459
PRACTICE EXAM 10 477
PRACTICE EXAM 11 495
PRACTICE EXAM 12 513
Appendix 1: Moment and Probability Generating Functions 533
1.1 Moment Generating Function and Probability Generating Function 533
1.2 Additional Relationships Involving Distribution Moments 538
1.3 Moment and Probability Generating Functions of Some Frequently Used Distributions 540
1.4 Appendix 1 - Problem Set 541
Appendix 2: Continuous Multivariate Distributions 553
2.1 Differentiation and Integration of Functions of Several Variables 553
2.2 Joint, Marginal, and Conditional Distributions 556
2.3 Expectation of a Function of Jointly Distributed Random Variables 559
2.4 Marginal Distributions 560
2.5 Independence of Random Variables 563
2.6 Conditional Distributions 564
2.7 Covariance and Correlation Between Random Variables 567
2.8 Moment Generating Function for a Joint Distribution 569
2.9 Bivariate Normal Distribution 569
2.10 Additional Relationships Related to Joint Distributions 570
2.11 Appendix 2 - Problem Set 575
Appendix 3: Transformations of Random Variables 631
3.1 Distribution of a Transformation of Random Variable \boldsymbol{X} 633
3.2 Distribution of a Transformation of Jointly Distributed Random Variables \boldsymbol{X} and \boldsymbol{Y} 635
3.3 Distribution of a Sum of Random Variables 636
3.4 Distribution of the Maximum or Minimum of a Collection of Independent Random Variables 640
3.5 Order Statistics 641
3.6 Mixtures of Distributions 644
$3.7 \quad$ Appendix 3 - Problem Set 646

Introductory Comments

This study manual is designed to help in the preparation for the Society of Actuaries Exam P. The study manual is divided into two main parts. The first part consists of a summary of notes and illustrative examples related to the material described in the Society of Actuaries (SOA) exam syllabus as well as a series of problem sets and detailed solutions related to each topic. Many of the examples and problems in the problem sets are taken from actual exams (and from the sample question link posted on the SOA website). Note that the symbol " \square " will denote the end of an example.

The second part of the study manual consists of twelve practice exams, with detailed solutions, which are designed to cover the range of material that will be found on the exam. The questions on these practice exams are not from old SOA exams and may be somewhat more challenging, on average, than questions from previous actual exams. Between the section of notes and the section with practice exams I have included the normal distribution table provided with the exam.

I have attempted to be thorough in the coverage of the topics upon which the exam is based. I have been, perhaps, more thorough than necessary on a couple of topics, particularly order statistics in Section 9 of the notes and some risk management topics in Section 10 of the notes. Section 0 of the notes provides a brief review of a few important topics in calculus and algebra. A few mathematical derivations of formulas will be presented but many formulas will be given without derivation.

This manual will be most effective for those who have had courses in college calculus at least to the sophomore level and courses in probability to the sophomore or junior level.

If you are taking Exam P for the first time, be aware that a most crucial aspect of the exam is the limited time given to take the exam (3 hours). Time management is extremely important, as is being able to work very quickly and accurately. Continual drill on important concepts and formulas by working through many problems will be helpful. It is also very important to be disciplined enough while taking the exam to avoid spending an inordinate amount of time on any one question. If the formulas and reasoning that will be needed to solve a particular question are not clear within 2 or 3 minutes of starting the question, the question should be abandoned (and returned to later if time permits). Using the exams in the second part of this study manual and simulating exam conditions will also help give you a feeling for the actual exam experience.

If you have any comments, criticisms or compliments regarding this study manual, please contact the publisher, ACTEX, or you may contact me directly at the e-mail address below. I apologize in advance for any errors, typographical or otherwise, that you might find, and it would be greatly appreciated if you bring them to my attention. Any errors that are found will be posted in an errata file at the ACTEX website, www.actexmadriver.com.

It is my sincere hope that you find this study manual helpful and useful in your preparation for the exam. I wish you the best of luck on the exam.

Samuel A. Broverman
Department of Statistical Sciences
University of Toronto
www.sambroverman.com

March 2022
Email: 2brove@rogers.com
or sam.broverman@utoronto.ca
www.brovermusic.com

Section 2

Conditional Probability and Independence

2.1 Definition of Conditional Probability

Conditional probability of event B given event A :

If $P[A]>0$, then $\boldsymbol{P}[\boldsymbol{B} \mid \boldsymbol{A}]=\frac{\boldsymbol{P}[\boldsymbol{B} \cap \boldsymbol{A}]}{\boldsymbol{P}[\boldsymbol{A}]}$ is defined to be the conditional probability that $\bullet \bullet$ event B occurs given that event A has occurred. Events A and B may be related so that if we know that event A has occurred, the conditional probability of event B occurring given that event \boldsymbol{A} has occurred might not be the same as the unconditional probability of event B occurring if we had no knowledge about the occurrence of event A. For instance, if a fair 6 -sided die is tossed and if we know that the outcome is even, then the conditional probability is 0 of tossing a 3 given that the toss is even. If we did not know that the toss was even, if we had no knowledge of the nature of the toss, then tossing a 3 would have an unconditional probability of $\frac{1}{6}$, the same as all other possible tosses that could occur.

When we condition on event A, we are assuming that event A has occurred so that A becomes the new probability space, and all conditional events must take place within event A (the new probability space). Dividing by $P[A]$ scales all probabilities so that A is the entire probability space, and $P[A \mid A]=1$. To say that event B has occurred given that event A has occurred means that both B and A (i.e., $B \cap A$) have occurred within the probability space A. This explains the numerator $P[B \cap A]$ in the definition of the conditional probability $P[B \mid A]$.

The expression $P[B \mid A]=\frac{P[B \cap A]}{P[A]}$ can be rewritten in the equivalent form

$$
P[B \cap A]=P[B \mid A] \times P[A]
$$

This is referred to as the multiplication rule.
Conditional probabilities satisfy all of the basic relationships satisfied by probabilities outlined in the previous section of this study manual. For instance $P\left[B^{\prime} \mid A\right]=1-P[B \mid A]$ and $P[B \cup C \mid A]=P[B \mid A]+P[C \mid A]-P[B \cap C \mid A]$.

Example 2.1.

Suppose that a fair six-sided die is tossed. The probability space is
$S=\{1,2,3,4,5,6\}$. We define the following events:
$A=$ "the number tossed is even" $=\{2,4,6\}$,
$B=$ "the number tossed is ≤ 3 " $=\{1,2,3\}$,
$C=$ "the number tossed is a 1 or a $2 "=\{1,2\}$,
$D=$ "the number tossed doesn't start with the letters ' f ' or ' t ' " $=\{1,6\}$.

The conditional probability of B given A is

$$
P[B \mid A]=\frac{P[B \cap A]}{P[A]}=\frac{P[\{1,2,3\} \cap\{2,4,6\}]}{P[\{2,4,6\}]}=\frac{P[\{2\}]}{P[\{2,4,6\}]}=\frac{1 / 6}{1 / 2}=\frac{1}{3} .
$$

We can interpret this conditional probability as follows. Knowing that event A has occurred means that the toss must be 2,4 or 6 . Since the original 6 possible tosses of a die were equally likely, if we are given the additional information that the toss is 2,4 or 6 , it seems reasonable that each of those possible tosses is equally likely, each with a probability of $\frac{1}{3}$. Then within the reduced probability space A, the (conditional) probability that event B occurs is the probability, in the reduced space, of tossing a 2 out of the equally likely possibilities of tossing a 2,4 or 6 ; this is $\frac{1}{3}$.
For events B and C, the conditional probability of B given C is $P[B \mid C]=\frac{P[B \cap C]}{P[C]}$. Since $B \cap C=C$ this conditional probability is $\frac{P[C]}{P[C]}=1$. Another way of looking at this is to note that C is a subevent of B (i.e. $C \subset B$ so that $C \cap B=C$), and to say that C has occurred means that the toss is 1 or 2 . It is then guaranteed that event B has occurred (the toss is a 1,2 or 3) given that C has occurred.
The conditional probability of A given C is $P[A \mid C]=\frac{P[2,4,6 \cap 1,2]}{P[1,2]}=\frac{P[2]}{P[1,2]}=\frac{1}{2}$.

Example 2.2.

If $P[A]=\frac{1}{6}$ and $P[B]=\frac{5}{12}$, and $P[A \mid B]+P[B \mid A]=\frac{7}{10}$, find $P[A \cap B]$.

Solution:

$P[B \mid A]=\frac{P[A \cap B]}{P[A]}=6 \times P[A \cap B]$ and $P[A \mid B]=\frac{P[A \cap B]}{P[B]}=\frac{12}{5} \times P[A \cap B]$
$\rightarrow\left(6+\frac{12}{5}\right) \times P[A \cap B]=\frac{7}{10} \rightarrow P[A \cap B]=\frac{1}{12}$.

(9) NOTE:

ζ The following important manipulation of event probabilities arises from time to time:

$$
P[B]=P[B \mid A] \times P[A]+P\left[B \mid A^{\prime}\right] \times P\left[A^{\prime}\right]
$$

\because The relationship in the note above is a version of the Law of Total Probability. This relationship is valid since for any events A and B, we have $P[B]=P[B \cap A]+P\left[B \cap A^{\prime}\right]$. We then use the relationships $P[B \cap A]=P[B \mid A] \times P[A]$ and $P\left[B \cap A^{\prime}\right]=P\left[B \mid A^{\prime}\right] \times P\left[A^{\prime}\right]$. If we know the conditional probabilities for event B given some other event A (i.e., $P[B \mid A]$), and if we also know the conditional probability of B given the complement A^{\prime} (i.e., $P\left[B \mid A^{\prime}\right]$), and if we are given the (unconditional) probability of event A (i.e., $P[A]$ from which we know $P\left[A^{\prime}\right]=1-P[A]$), then we have all the components we need to find find the (unconditional) probability of event B using the equation in the note above. An application of this concept occurs when an experiment has two (or more) steps. The following example illustrates this idea.

Example 2.3. \%

Urn I contains 2 white and 2 black balls and Urn II contains 3 white and 2 black balls. An Urn is chosen at random, and a ball is randomly selected from that Urn. Find the probability that the ball chosen is white.

Solution:

Let A be the event that Urn I is chosen and A^{\prime} is the event that Urn II is chosen. The implicit assumption is that both Urns are equally likely to be chosen (this is the meaning of "an Urn is chosen at random"). Therefore, $P[A]=\frac{1}{2}$ and $P\left[A^{\prime}\right]=\frac{1}{2}$. Let B be the event that the ball chosen is white. If we know that Urn I was chosen, then there is $\frac{1}{2}$ probability of choosing a white ball (2 white out of 4 balls, it is assumed that each ball has the same chance of being chosen); this can be described as $P[B \mid A]=\frac{1}{2}$. In a similar way, if Urn II is chosen, then $P\left[B \mid A^{\prime}\right]=\frac{3}{5}$ (3 white out of 5 balls). We can now apply the relationship described prior to this example. $P[B \cap A]=P[B \mid A] \times P[A]=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$, and $P\left[B \cap A^{\prime}\right]=P\left[B \mid A^{\prime}\right] \times P\left[A^{\prime}\right]=\frac{3}{5} \times \frac{1}{2}=\frac{3}{10}$.
And then we get $P[B]=P[B \cap A]+P\left[B \cap A^{\prime}\right]=\frac{1}{4}+\frac{3}{10}=\frac{11}{20}$.
The order of calculations (1-2-3 labeled below) can be summarized in the following table:

$$
\begin{array}{cc}
& A \\
\text { B } & A^{\prime} \\
& \text { 1.P }[B \cap A]=P[B \mid A] \times P[A] \\
\text { 2. } P\left[B\left[B \cap A^{\prime}\right]=P\left[B \mid A^{\prime}\right] \times P\left[A^{\prime}\right]\right. \\
& \text { 3. } P[B \cap A]+P[B \cap A]
\end{array}
$$

An event tree diagram, shown below, is another way of illustrating the probability relationships.


```
SOTOTE:
} An exam question may state that "an item is to be chosen at random from a collection
of items". Unless there is an indication otherwise, this is interpreted to mean that each
item has the same chance of being chosen. Also, if we are told that a fair coin
is tossed randomly, then we interpret that to mean that the head and tail each
have the probability of 0.5 occurring. Of course, if we are told that the coin is
"loaded" so that the probability of tossing a head is }\frac{2}{3}\mathrm{ and tail is }\frac{1}{3}\mathrm{ , then random toss
means the head and tail will occur with those stated probabilities.
```


2.2 Bayes' Rule, Bayes' Theorem and the Law of Total Probability

Bayes' rule and Bayes' Theorem (basic form):
For any events A and B with $P[B]>0$,

$$
P[A \mid B]=\frac{P[A \cap B]}{P[B]}=\frac{P[B \mid A] \times P[A]}{P[B \mid A] \times P[A]+P\left[B \mid A^{\prime}\right] \times P\left[A^{\prime}\right]}
$$

The usual way that this is applied is in the case in which we are given the values of

$$
P[A], P[B \mid A] \text { and } P\left[B \mid A^{\prime}\right] \text { (from } P[A] \text { we get } P\left[A^{\prime}\right]=1-P[A] \text {), }
$$

and we are asked to find $P[A \mid B]$ (in other words, we are asked to "turn around" the conditioning of the events A and B). We can summarize this process by calculating the quantities in the following "table of calculations" in the order indicated numerically (1-2-3-4) (other entries in the table are not necessary in this calculation, but might be needed in related calculations).

$$
3: P[B]=P[B \cap A]+P\left[B \cap A^{\prime}\right]
$$

Step 4: $P[A \mid B]=\frac{P[A \cap B]}{P[B]}$
Also, we can find

$$
B^{\prime} \begin{gathered}
P\left[B^{\prime} \mid A\right]=1-P[B \mid A] \\
P\left[B^{\prime} \cap A\right]=P\left[B^{\prime} \mid A\right] \times P[A]
\end{gathered} \begin{gathered}
P\left[B^{\prime} \mid A^{\prime}\right]=1-P\left[B \mid A^{\prime}\right] \\
P\left[B^{\prime} \cap A^{\prime}\right]=P\left[B^{\prime} \mid A^{\prime}\right] \times P\left[A^{\prime}\right]
\end{gathered}
$$

and $P\left[B^{\prime}\right]=P\left[B^{\prime} \cap A\right]+P\left[B^{\prime} \cap A^{\prime}\right]$ (but we could have found $P\left[B^{\prime}\right]$ from $P\left[B^{\prime}\right]=1-P[B]$, once $P[B]$ was found).

This can also be summarized in the following sequence of calculations.

$$
\begin{gathered}
P[A], P[B \mid A] \text {, given } \quad P\left[A^{\prime}\right]=1-P[A], P\left[B \mid A^{\prime}\right] \text {, given } \\
\Downarrow \\
\Downarrow \\
P[B \cap A]=P[B \mid A] \times P[A] \quad P\left[B \cap A^{\prime}\right]=P\left[B \mid A^{\prime}\right] \times P\left[A^{\prime}\right] \\
P[B]=P[B \cap A]+P\left[B \cap A^{\prime}\right]
\end{gathered}
$$

Algebraically, we have done the following calculation:

$$
P[A \mid B]=\frac{P[A \cap B]}{P[B]}=\frac{P[A \cap B]}{P[B \cap A]+P\left[B \cap A^{\prime}\right]}=\frac{P[B \mid A] \times P[A]}{P[B \mid A] \times P[A]+P\left[B \mid A^{\prime}\right] \times P\left[A^{\prime}\right]},
$$

where all the factors on the right side of the equation were originally known. Note that the numerator is one of the components of the denominator. The following event tree is similar to the one in Example 2.3, illustrating the probability relationships.

Note that at the bottom of the event tree, $P\left(B^{\prime}\right)$ is also equal to $1-P(B)$.


```
4) NOTE:
    Exam questions that involve conditional probability and make use of Bayes
    rule (and its extended form reviewed below) occur frequently. The key starting
    point is identifying and labeling unconditional events and conditional events and their
    probabilities in an efficient way.
```


Example 2.4.

Urn I contains 2 white and 2 black balls and Urn II contains 3 white and 2 black balls. One ball is chosen at random from Urn I and transferred to Urn II, and then a ball is chosen at random from Urn II. The ball chosen from Urn II is observed to be white. Find the probability that the ball transferred from Urn I to Urn II was white.

Solution:

Let A denote the event that the ball transferred from Urn I to Urn II was white and let B denote the event that the ball chosen from Urn II is white. We are asked to find $P[A \mid B]$.

From the simple nature of the situation (and the usual default assumption of uniformity in such a situation, meaning that all balls are equally likely to be chosen from Urn I in the first step), we have $P[A]=\frac{1}{2}$ (2 of the 4 balls in Urn I are white), and $P\left[A^{\prime}\right]=\frac{1}{2}$. These are the unconditional probabilities of events A and A^{\prime}, the probability of choosing a white or a black ball from Urn I without any further information. Bayes' Rule will allow us to update the probability to a conditional probability of the color of the first ball chosen from Urn I using the additional given information about the color of ball that is subsequently chosen from Urn II after the first ball chosen is added to Urn II.

If the ball transferred is white, then Urn II has 4 white and 2 black balls, and the probability of choosing a white ball out of Urn II is $\frac{2}{3}$; this is $P[B \mid A]=\frac{2}{3}$.
If the ball transferred is black, then Urn II has 3 white and 3 black balls, and the probability of choosing a white ball out of Urn II is $\frac{1}{2}$; this is $P\left[B \mid A^{\prime}\right]=\frac{1}{2}$.

All of the information needed has been identified. As in the "table of calculation" described a little earlier, we do the calculations in the following order:

1. $P[B \cap A]=P[B \mid A] \times P[A]=\frac{2}{3} \times \frac{1}{2}=\frac{1}{3}$
2. $P\left[B \cap A^{\prime}\right]=P\left[B \mid A^{\prime}\right] \times P\left[A^{\prime}\right]=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$
3. $P[B]=P[B \cap A]+P\left[B \cap A^{\prime}\right]=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}$
4. $P[A \mid B]=\frac{P[A \cap B]}{P[B]}=\frac{1 / 3}{7 / 12}=\frac{4}{7}$

Example 2.5. \%

Identical twins come from the same egg and hence are of the same sex. Fraternal twins have a 50-50 chance of being the same sex. Among twins, the probability of a fraternal set is p and an identical set is $q=1-p$. If the next set of twins are of the same sex, formulate the probability that they are identical in terms of q.

Solution:

Let B be the event "the next set of twins are of the same sex", and let A be the event "the next sets of twins are identical". We are given $P[B \mid A]=1, P\left[B \mid A^{\prime}\right]=0.5, P[A]=q$, and $P\left[A^{\prime}\right]=p=1-q$.
Then $P[A \mid B]=\frac{P[B \cap A]}{P[B]}$ is the probability we are asked to find.

But $\quad P[B \cap A]=P[B \mid A] \times P[A]=q$, and $\quad P\left[B \cap A^{\prime}\right]=P\left[B \mid A^{\prime}\right] \times P\left[A^{\prime}\right]=0.5 p$.
Thus, $P[B]=P[B \cap A]+P\left[B \cap A^{\prime}\right]=q+0.5 \times p=q+0.5 \times(1-q)=0.5 \times(1+q)$, and $P[A \mid B]=\frac{q}{0.5 \times(1+q)}$. This can be summarized in the following table

$$
\begin{aligned}
& A=\text { identical, } P[A]=q \quad A^{\prime}=\text { not identical, } P\left[A^{\prime}\right]=1-q \\
& \begin{aligned}
\mathrm{B}=\text { same sex } & \begin{array}{l}
P[B \mid A]=1 \text { (given), } \\
\begin{array}{l}
P[B \cap A] \\
=P[B \mid A] \times P[A]=q
\end{array} \\
\Downarrow
\end{array} \\
& \begin{array}{l}
\begin{array}{l}
P\left[B \mid A^{\prime}\right]=0.5 \text { (given), } \\
P\left[B \cap A^{\prime}\right] \\
=P\left[B \mid A^{\prime}\right] \times P\left[A^{\prime}\right]=0.5 \times(1-q)
\end{array} \\
\\
P[B]=P[B \cap A]+P\left[B \cap A^{\prime}\right]=q+0.5 \times(1-q)=0.5 \times(1+q)
\end{array}
\end{aligned}
\end{aligned}
$$

Then, $\quad P[A \mid B]=\frac{P[B \cap A]}{P[B]}=\frac{q}{0.5 \times(1+q)}$.
The event tree shown earlier can be applied to this example.

Bayes' rule and Bayes' Theorem (extended form):
Suppose $A_{1}, A_{2}, \ldots, A_{n}$ form a partition of the entire probability space S and B is any event. The General Law of Total Probability is $P[B]=\sum_{i=1}^{n} P\left[B \cap A_{i}\right]=\sum_{i=1}^{n} P\left[B \mid A_{i}\right] \times P\left[A_{i}\right]$. The General Form of Bayes Theorem is

$$
P\left[A_{j} \mid B\right]=\frac{P\left[B \cap A_{j}\right]}{P[B]}=\frac{P\left[B \cap A_{j}\right]}{\sum_{i=1}^{n} P\left[B \cap A_{i}\right]}=\frac{P\left[B \mid A_{j}\right] \times P\left[A_{j}\right]}{\sum_{i=1}^{n} P\left[B \mid A_{i}\right] \times P\left[A_{i}\right]} \text { for each } j=1,2, \ldots, n .
$$

If $n=3$, and events A_{1}, A_{2}, and A_{3} form a partition of the full probability space, then

$$
\begin{aligned}
P\left[A_{1} \mid B\right] & =\frac{P\left[A_{1} \cap B\right]}{P[B]}=\frac{P\left[B \mid A_{1}\right] \times P\left[A_{1}\right]}{P\left[B \cap A_{1}\right]+P\left[B \cap A_{2}\right]+P\left[B \cap A_{3}\right]} \\
& =\frac{P\left[B \mid A_{1}\right] \times P\left[A_{1}\right]}{P\left[B \mid A_{1}\right] \times P\left[A_{1}\right]+P\left[B \mid A_{2}\right] \times P\left[A_{2}\right]+P\left[B \mid A_{3}\right] \times P\left[A_{3}\right]} .
\end{aligned}
$$

Similar relationships hold for $P\left[A_{2} \mid B\right]$ and $P\left[A_{3} \mid B\right]$. The relationship in the denominator, $P[B]=\sum_{i=1}^{n} P\left[B \mid A_{i}\right] \times P\left[A_{i}\right]$ is the general Law of Total Probability. The most basic form of Bayes' rule is the case in which the partition consists of just two events, A and A^{\prime}. This was presented a little earlier.

The main application of Bayes' rule occurs in the situation in which the $P\left[A_{i}\right]$ probabilities are known and the $P\left[B \mid A_{h}\right]$ probabilities are known, and we are asked to find $P\left[A_{j} \mid B\right]$ for one or more of the j 's. The series of calculations can be summarized in a table similar to that for the basic form of Bayes' rule. This is illustrated in the following example.

Example 2.6.

Three dice have the following probabilities of throwing a "six": p, q, r, respectively. One of the dice is chosen at random and thrown (each is equally likely to be chosen). A "six" appeared. What is the probability that the die chosen was the first one?

Solution:

The event "a 6 is thrown" is denoted by B and A_{1}, A_{2} and A_{3} denote the events that die 1 , die 2 and die 3 was chosen. $P\left[A_{1} \mid B\right]=\frac{P\left[A_{1} \cap B\right]}{P[B]}=\frac{P\left[B \mid A_{1}\right] \times P\left[A_{1}\right]}{P[B]}=\frac{p \times \frac{1}{3}}{P[B]}$. But

$$
\begin{aligned}
P[B] & =P\left[B \cap A_{1}\right]+P\left[B \cap A_{2}\right]+P\left[B \cap A_{3}\right] \\
& =P\left[B \mid A_{1}\right] \times P\left[A_{1}\right]+P\left[B \mid A_{2}\right] \times P\left[A_{2}\right]+P\left[B \mid A_{3}\right] \times P\left[A_{3}\right] \\
& =p \times \frac{1}{3}+q \times \frac{1}{3}+r \times \frac{1}{3}=\frac{p+q+r}{3} \\
& \Rightarrow P\left[A_{1} \mid B\right]=\frac{p \times \frac{1}{3}}{P[B]}=\frac{p \times \frac{1}{3}}{(p+q+r) \times \frac{1}{3}}=\frac{p}{p+q+r} .
\end{aligned}
$$

These calculations can be summarized in the following table:

	Die $1, P\left[A_{1}\right]=\frac{1}{3}$ (given)	Die $2, P\left[A_{2}\right]=\frac{1}{3}$ (given)	Die 3, $P\left[A_{3}\right]=\frac{1}{3}$ (given)
Toss "6"	$P\left[B \mid A_{1}\right]=p$ (given)	$P\left[B \mid A_{2}\right]=q$ (given)	$P\left[B \mid A_{3}\right]=r$ (given)
B	Then $P\left[B \cap A_{1}\right]$	Then $P\left[B \cap A_{2}\right]$	Then $P\left[B \cap A_{3}\right]$
	$=P\left[B \mid A_{1}\right] \times P\left[A_{1}\right]=p \times \frac{1}{3}$	$=P\left[B \mid A_{2}\right] \times P\left[A_{2}\right]=q \times \frac{1}{3}$	$=P\left[B \mid A_{3}\right] \times P\left[A_{3}\right]=r \times \frac{1}{3}$

$P[B]=p \times \frac{1}{3}+q \times \frac{1}{3}+r \times \frac{1}{3}=\frac{1}{3} \times(p+q+r)$.
In terms of Venn diagrams, the conditional probability is the ratio of the shaded area probability in the first diagram to the shaded area probability in the second diagram.

Die 2
Die 1

The event tree representing the probabilities has three branches at the top node to represent the three die types that can be chosen in the first step of the process.

In Example 2.6 there is some symmetry to the situation and general reasoning can provide a shortened solution. In the conditional probability

$$
P[\operatorname{die} 1 \mid " 6 "]=\frac{P[(\operatorname{die} 1) \cap(" 6 ")]}{P[" 6 "]},
$$

we can think of the denominator as the combination of the three possible ways a " 6 " can occur from the three dice combined, $p+q+r$, and we can think of the numerator as the " 6 " occurring from die 1 , with probability p. Then the conditional probability is the fraction $\frac{p}{p+q+r}$. The symmetry involved here is in the assumption that each die was equally likely to be chosen, so there is a $\frac{1}{3}$ chance of any one die being chosen. This factor of $\frac{1}{3}$ cancels in the numerator and denominator of $\frac{p \times \frac{1}{3}}{(p+q+r) \times \frac{1}{3}}$. If we had not had this symmetry, we would have to apply different "weights" to the three dice.

Another example of using this sort of symmetry to simplify probability calculations is a variation on Example 2.3 above. Suppose that Urn I has 2 white and 3 black balls and Urn II has 4 white and 1 black balls. An Urn is chosen at random and a ball is chosen. The reader should verify using the usual conditional probability rules that the probability of choosing a white ball is $\frac{6}{10}$. This can also be seen by noting that if we consider that of the 10 balls that are in the two Urns
combined, 6 are white, so that the chance of picking a white ball out of the 10 is $\frac{6}{10}$. Suppose that we do not know which Urn was chosen but we are told that the ball chosen is white and we wish to apply Bayes' Rule to find the conditional probability that Urn I was chosen given that the ball color is white. The reader should use the usual conditional probability rules to verify that this conditional probability is $\frac{0.4}{1.2}=\frac{1}{3}$.

The similarity of the modification to Example 2.3 to the situation in Example 2.6 is that in the modification to Example 2.3 just presented, both Urns have the same initial chance of $\frac{1}{2}$ of being chosen and in Example 2.6, each of the three dice has the same initial chance of $\frac{1}{3}$ of being chosen. We can see this idea in the general framework of Bayes' Rule. Suppose each of the partition events $A_{1}, A_{2}, \ldots, A_{n}$ has the same probability of $\frac{1}{n}$. Then

$$
P\left[A_{j} \mid B\right]=\frac{P\left[B \mid A_{j}\right] \times P\left[A_{j}\right]}{\sum_{i=1}^{n} P\left[B \mid A_{i}\right] \times P\left[A_{i}\right]}=\frac{P\left[B \mid A_{j}\right] \times \frac{1}{n}}{\sum_{i=1}^{n} P\left[B \mid A_{i}\right] \times \frac{1}{n}}=\frac{P\left[B \mid A_{j}\right]}{\sum_{i=1}^{n} P\left[B \mid A_{i}\right]} \text { for each } j=1,2, \ldots, n .
$$

In the modification to Example 2.3, $n=2, A_{1}$ and A_{2} are "choosing Urns I and II", respectively and B is "the ball is white". Then

$$
P[\text { Urn I } \mid \text { white }]=P\left[A_{1} \mid B\right]=\frac{P\left[B \mid A_{1}\right]}{P\left[B \mid A_{1}\right]+P\left[B \mid A_{2}\right]}=\frac{2 / 5}{2 / 5+4 / 5}=\frac{0.4}{1.2}=\frac{1}{3}
$$

In Example 2.6, $n=3$ and A_{i} is "choose die i " and B is "a 6 is tossed", so that

$$
P[\text { Die 1|"6" }]=P\left[A_{1} \mid B\right]=\frac{P\left[B \mid A_{1}\right]}{P\left[B \mid A_{1}\right]+P\left[B \mid A_{2}\right]+P\left[B \mid A_{3}\right]}=\frac{p}{p+q+r}
$$

In the modification to Example 2.3 there is additional symmetry that can be used to simplify the determination of the conditional probability. We see that knowing that the ball is white and knowing that 2 white balls are in Urn I out of a total of $2+4=6$ white balls in the two Urns combined, and knowing that both Urns have the same number of balls (5 balls in each Urn), the conditional probability of having chosen Urn I given that the ball chosen is white is $\frac{2}{6}$. Again, this is only valid in this case because the initial probabilities of choosing Urn I or II are both $\frac{1}{2}$ and both Urns have the same number of balls.

2.3 Independent Events

Independent events A and B :
If events A and B satisfy the relationship $P[A \cap B]=P[A] \times P[B]$, then the events are said to be independent or stochastically independent or statistically independent. The independence of (non-empty) events A and B is equivalent to $P[A \mid B]=P[A]$, and also is equivalent to $P[B \mid A]=P[B]$.

Example 2.1. (continued): \because A fair six-sided die is tossed.
$A=$ "the number tossed is even" $=\{2,4,6\}$,
$B=$ "the number tossed is $\leq 3 "=\{1,2,3\}$,
$C=$ "the number tossed is a 1 or a $2 "=\{1,2\}$,
$D=$ "the number tossed doesn't start with the letters ' f ' or ' t '" $=\{1,6\}$.
We have the following probabilities: $P[A]=\frac{1}{2}, P[B]=\frac{1}{2}, P[C]=\frac{1}{3}, P[D]=\frac{1}{3}$.
A and B are not independent since $\frac{1}{6}=P[\{2\}]=P[A \cap B] \neq P[A] \times P[B]=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$. We can also see that A and B are not independent because $P[B \mid A]=\frac{1}{3} \neq \frac{1}{2}=P[B]$.
Also, B and C are not independent, since $P[B \cap C]=\frac{1}{3} \neq \frac{1}{2} \times \frac{1}{3}=P[B] \times P[C]$ (also since $P[B \mid C]=1 \neq \frac{1}{2}=P[B]$.
Events A and C are independent, since $P[A \cap C]=\frac{1}{6}=\frac{1}{2} \times \frac{1}{3}=P[A] \times P[C]$ (alternatively, $P[A \mid C]=\frac{1}{2}=P[A]$, also indicating that A and C are independent).
The reader should check that both A and B are independent of D.

Mutually independent events: Events $A_{1}, A_{2}, \ldots, A_{n}$ are said to be mutually independent if the following relationships are satisfied. For any two events, say A_{i} and A_{j}, we have $P\left[A_{i} \cap A_{j}\right]=P\left[A_{i}\right] \times P\left[A_{j}\right]$. For any three events, Say A_{i}, A_{j}, A_{k}, we have
$P\left[A_{i} \cap A_{j} \cap A_{k}\right]=P\left[A_{i}\right] \times P\left[A_{j}\right] \times P\left[A_{k}\right]$. This must be true for any four events, or five events, etc.

Some rules concerning conditional probability and independence are:

(i) $P[A \cap B]=P[B \mid A] \times P[A]=P[A \mid B] \times P[B]$ for any events A and B
(ii) If $P\left[A_{1} \cap A_{2} \cap \cdots \cap A_{n-1}\right]>0$, then

$$
P\left[A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right]=P\left[A_{1}\right] \times P\left[A_{2} \mid A_{1}\right] \times P\left[A_{3} \mid A_{1} \cap A_{2}\right] \times \cdots \times P\left[A_{n} \mid A_{1} \cap A_{2} \cap \cdots \cap A_{n-1}\right]
$$

(iii) $P\left[A^{\prime} \mid B\right]=\mathbf{1}-\boldsymbol{P}[A \mid B]$
(iv) $P[A \cup B \mid C]=P[A \mid C]+P[B \mid C]-P[A \cap B \mid C]$
(v) If $A \subset B$ then $P[A \mid B]=\frac{P[A \cap B]}{P[B]}=\frac{P[A]}{P[B]}$, and $P[B \mid A]=1$; properties (iv) and (v) are the same properties satisfied by unconditional events
(vi) If A and B are independent events then A^{\prime} and B are independent events, A and B^{\prime} are independent events, and A^{\prime} and B^{\prime} are independent events
(vii) Since $P[\emptyset]=P[\emptyset \cap A]=0=P[\emptyset] \times P[A]$ for any event A, it follows that \emptyset is independent of any event A

Example 2.7.

Suppose that events A and B are independent. Find the probability, in terms of $P[A]$ and $P[B]$, that exactly one of the events A and B occurs.

Solution:

$P[$ exactly one of A and $B]=P\left[\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right)\right]$.
Since $A \cap B^{\prime}$ and $A^{\prime} \cap B$ are mutually exclusive, it follows that
$P[$ exactly one of A and $B]=P\left[A \cap B^{\prime}\right]+P\left[A^{\prime} \cap B\right]$. Since A and B are independent, it follows that A and B^{\prime} are also independent, as are B and A^{\prime}.
Then $\quad P\left[\left(A \cap B^{\prime}\right) \cup\left(A^{\prime} \cap B\right)\right]=P[A] \times P\left[B^{\prime}\right]+P[B] \times P\left[A^{\prime}\right]$

$$
=P[A] \times(1-P[B])+P[B] \times(1-P[A])=P[A]+P[B]-2 P[A] \times P[B]
$$

Example 2.8. ©

In a survey of 94 students, the following data was obtained.
60 took English, 56 took Math, 42 took Chemistry, 34 took English and Math, 20 took Math and Chemistry, 16 took English and Chemistry, 6 took all three subjects. Find the following proportions.
(i) Of those who took Math, the proportion who took neither English nor Chemistry,
(ii) Of those who took English or Math, the proportion who also took Chemistry.

Solution:

The following diagram illustrates how the numbers of students can be deconstructed. The situation in this example is very similar to that of Example 1.5 earlier in this study manual and the diagram below is found in the same way as it was in Example 1.5. We calculate probability as proportion of the numbers in the various subsets.

(i) We are given that 56 students took Math, and from the diagram we see that 8 of them took neither English nor Chemistry.

$$
P\left[E^{\prime} \cap C^{\prime} \mid M\right]=\frac{P\left[E^{\prime} \cap C^{\prime} \cap M\right]}{P[M]}=\frac{n\left(E^{\prime} \cap C^{\prime} \cap M\right)}{n(M)}=\frac{8}{56}=\frac{1}{7} .
$$

(ii) The number of students who took English or Math or both is $n(E \cup M)=n(E)+n(M)-n(E \cap M)=60+56-34=82$. Alternatively, from the diagram we see that this number is $8+14+6+28+16+10=82$. It can also be seen from the diagram that the number of those who took English or Math and also took Chemistry is $14+6+10=30=n[(E \cup M) \cap C]$. Then

$$
P[C \mid E \cup M]=\frac{P[(E \cup M) \cap C]}{P[E \cup M]}=\frac{n((E \cup M) \cap C)}{n(E \cup M)}=\frac{30}{82}=\frac{15}{41} .
$$

Example 2.9.

A survey is made to determine the number of households having electric appliances in a certain city. It is found that 75% have radios $(R), 65 \%$ have irons $(I), 55 \%$ have electric toasters $(T), 50 \%$ have $I \cap R, 40 \%$ have $R \cap T, 30 \%$ have $I \cap T$, and 20% have all three $R \cap I \cap T$.
Find the following proportions:
(i) Of those households that have a toaster, find the proportion that also have a radio.
(ii) Of those households that have a toaster but no iron, find the proportion that have a radio.

Solution:

This is a continuation of Example 1.4 given earlier in the study manual. Again, proportion is regarded as the same as probability. The diagram below deconstructs the three events.

(i) This is $P[R \mid T]$. The language "of those households that have a toaster" means, "given that the household has a toaster", so we are being asked for a conditional probability.
Then, $P[R \mid T]=\frac{P[R \cap T]}{P[T]}=\frac{0.4}{0.55}=\frac{8}{11}$.
(ii) This is $P\left[R \mid T \cap I^{\prime}\right]=\frac{P\left[R \cap T \cap I^{\prime}\right]}{P\left[T \cap I^{\prime}\right]}=\frac{.2}{.25}=\frac{4}{5}$.

Example 2.8 presented a "population" of 94 individuals, each with some combination of various properties (took English, took Math, took Chemistry). We found conditional probabilities involving the various properties by calculating proportions in the following way

$$
P[A \mid B]=\frac{\text { number of individuals satisfying both properties } A \text { and } B}{\text { number of individuals satisfying property } B}
$$

We could approach Example 2.9 in a similar way by creating a "model population" with the appropriate attributes. Since we are given percentages of households with various properties, we can imagine a model population of 100 households, in which 75 have radios ($R, 75 \%$), 65 have irons $(I), 55$ have electric toasters $(T), 50$ have $I \cap R, 40$ have $R \cap T, 30$ have $I \cap T$, and 20 have all three. The diagram in the solution could be modified by changing the decimals to numbers out of 100 , so .2 becomes 20, etc. Then to solve (i), since 55 have toasters and 40 have both a radio and a toaster, the proportion of those who have toasters that also have a radio is $\frac{40}{55}=\frac{8}{11}$.
Creating a model population is sometimes an efficient way of solving a problem involving conditional probabilities, particularly when applying Bayes rule. The following example illustrates this.

Example 2.10. (SOA):
A blood test indicates the presence of a particular disease 95% of the time when the disease is actually present. The same test indicates the presence of the disease 0.5% of the time when the disease is not present. One percent of the population actually has the disease. Calculate the probability that a person has the disease given that the test indicates the presence of the disease.

Solution:

We identify the following events:
D : a person has the disease;
$T P$: a person tests positive for the disease.
We are given

$$
\begin{aligned}
& P[D]=0.01, \text { from which we find } P\left[D^{\prime}\right]=0.99, \\
& P[T P \mid D]=0.95, \text { from which we find } P\left[T P^{\prime} \mid D\right]=0.05, \text { and } \\
& P\left[T P \mid D^{\prime}\right]=0.005, \text { from which we find } P\left[T P^{\prime} \mid D^{\prime}\right]=0.995 .
\end{aligned}
$$

We wish to find $P[D \mid T P]$. We first solve the problem using rules of conditional probability. We have $P[D \mid T P]=\frac{P[D \cap T P]}{P[T P]}$.
We also have, $P[D \cap T P]=P[T P \mid D] \times P[D]=0.95 \times 0.01=0.0095$, and

$$
\begin{aligned}
P[T P] & =P[D \cap T P]+P\left[D^{\prime} \cap T P\right] \\
& =P[T P \mid D] \times P[D]+P\left[T P \mid D^{\prime}\right] \times P\left[D^{\prime}\right] \\
& =0.95 \times 0.01+0.005 \times .99=.01445 .
\end{aligned}
$$

Then, $P[D \mid T P]=\frac{P[D \cap T P]}{P[T P]}=\frac{0.0095}{0.01445}=0.657$.
We can also solve this problem with the model population approach. We imagine a model population of 100,000 individuals. In this population, the number with disease is $\#(D)=$ 1000 (. 01 of the population), the number without disease is $\#\left(D^{\prime}\right)=99,000$ (0.99 of the population).

Since $P[P \mid D]=0.95$, it follows that 95% of those with the disease will test positive, so the number who have the disease and test positive is $\#(T P \cap D)=0.95 \times 1000=950$ (this just reflects the fact that $P[T P \cap D]=P[T P \mid D] \times P[D]=0.95 \times 0.01=.0095$, so that $0.0095 \times 100,000=950$ in the population have the disease and test positive. In the same way, we find $\#\left(T P \cap D^{\prime}\right)=0.005 \times 99,000=495$ is the number who do not have disease but test positive. Therefore, the total number who test positive is

$$
\#(T P)=\#(T P \cap D)+\#\left(T P \cap D^{\prime}\right)=950+495=1445
$$

The probability that a person has the disease given that the test indicates the presence of the disease is the proportion that have the disease and test positive as a fraction of all those who test positive,

$$
P[D \mid T P]=\frac{\#(T P \cap D)}{\#(T P)}=\frac{950}{1445}=0.657 .
$$

The following table summarizes the calculations in the conditional probability approach.

	$P[D]=0.01$, given	$P\left[D^{\prime}\right]=0.99$
		$=1-0.01$
TP	$P[T P \mid D]=0.95$, given $P[T P \cap D]$	$\begin{gathered} P\left[T P \mid D^{\prime}\right]=0.005, \text { given } \\ P\left[T P \cap D^{\prime}\right] \end{gathered}$
	$=P[T P \mid D] \times P[D]$	$=P\left[T P \mid D^{\prime}\right] \times P\left[D^{\prime}\right]$
	$=0.95 \times 0.01=0.0095$	$=0.005 \times 0.99=0.00495$
$T P^{\prime}$	$P\left[T P^{\prime} \mid D\right]=1-P[T P \mid D]$	$P\left[T P^{\prime} \mid D^{\prime}\right]=1-P[T P \mid D]$
	$=0.05$,	$=0.995$,
	$P\left[T P^{\prime} \cap D\right]$	$P\left[T P^{\prime} \cap D^{\prime}\right]$
	$=P\left[T P^{\prime} \mid D\right] \times P[D]$	$=P\left[T P^{\prime} \mid D^{\prime}\right] \times P\left[D^{\prime}\right]$
	$=0.05 \times 0.01=0.0005$	$=0.995 \times 0.99=0.98505$

$P[T P]=P[T P \cap D]+P\left[T P \cap D^{\prime}\right]=0.0095+0.00495=0.01445$.
$P[D \mid T P]=\frac{P[D \cap T P]}{P[T P]}=\frac{0.0095}{0.01445}=0.657$.

2.4 Problem Set 2

1. Let A, B, C and D be events such that $B=A^{\prime}, C \cap D=\emptyset$, and $P[A]=\frac{1}{4}, \quad P[B]=\frac{3}{4}, \quad P[C \mid A]=\frac{1}{2}, \quad P[C \mid B]=\frac{3}{4}, \quad P[D \mid A]=\frac{1}{4}, \quad P[D \mid B]=\frac{1}{8}$. Calculate $P[C \cup D]$.
(A) $\frac{5}{32}$
(B) $\frac{1}{4}$
(C) $\frac{27}{32}$
(D) $\frac{3}{4}$
(E) 1
2. You are given that $P[A]=.5$ and $P[A \cup B]=.7$.

Actuary 1 assumes that A and B are independent and calculates $P[B]$ based on that assumption. Actuary 2 assumes that A and B mutually exclusive and calculates $P[B]$ based on that assumption. Find the absolute difference between the two calculated values.
(A) 0
(B) 0.05
(C) 0.10
(D) 0.15
(E) 0.20
3. (SOA) An actuary studying the insurance preferences of automobile owners makes the following conclusions:
(i) An automobile owner is twice as likely to purchase collision coverage as disability coverage
(ii) The event that an automobile owner purchases collision coverage is independent of the event that he or she purchases disability coverage.
(iii) The probability that an automobile owner purchases both collision and disability coverages is 0.15 .

What is the probability that an automobile owner purchases neither collision nor disability coverage?
(A) 0.18
(B) 0.33
(C) 0.48
(D) 0.67
(E) 0.82
4. Two bowls each contain 5 black and 5 white balls. A ball is chosen at random from bowl 1 and put into bowl 2. A ball is then chosen at random from bowl 2 and put into bowl 1 . Find the probability that bowl 1 still has 5 black and 5 white balls.
(A) $\frac{2}{3}$
(B) $\frac{3}{5}$
(C) $\frac{6}{11}$
(D) $\frac{1}{2}$
(E) $\frac{6}{13}$
5. (SOA) An insurance company examines its pool of auto insurance customers and gathers the following information:
(i) All customers insure at least one car.
(ii) 70% of the customers insure more than one car.
(iii) 20% of the customers insure a sports car.
(iv) Of those customers who insure more than one car, 15% insure a sports car.

Calculate the probability that a randomly selected customer insures exactly one car and that car is not a sports car.
(A) 0.13
(B) 0.21
(C) 0.24
(D) 0.25
(E) 0.30
6. (SOA) An insurance company pays hospital claims. The number of claims that include emergency room or operating room charges is 85% of the total number of claims. The number of claims that do not include emergency room charges is 25% of the total number of claims. The occurrence of emergency room charges is independent of the occurrence of operating room charges on hospital claims. Calculate the probability that a claim submitted to the insurance company includes operating room charges.
(A) 0.10
(B) 0.20
(C) 0.25
(D) 0.40
(E) 0.80
7. Let A, B and C be events such that $P[A \mid C]=0.05$ and $P[B \mid C]=0.05$. Which of the following statements must be true?
(A) $P[A \cap B \mid C]=(.05)^{2}$
(B) $P\left[A^{\prime} \cap B^{\prime} \mid C\right] \geq .90$
(C) $P[A \cup B \mid C] \leq .05$
(D) $P\left[A \cup B \mid C^{\prime}\right] \geq 1-(.05)^{2}$
(E) $P\left[A \cup B \mid C^{\prime}\right] \geq .10$
8. A system has two components placed in series so that the system fails if either of the two components fails. The second component is twice as likely to fail as the first. If the two components operate independently, and if the probability that the entire system fails is .28 , find the probability that the first component fails.
(A) $\frac{0.28}{3}$
(B) 0.10
(C) $\frac{0.56}{3}$
(D) 0.20
(E) $\sqrt{0.14}$
9. A ball is drawn at random from a box containing 10 balls numbered sequentially from 1 to 10 . Let X be the number of the ball selected, let R be the event that X is an even number, let S be the event that $X \geq 6$, and let T be the event that $X \leq 4$. Which of the pairs $(R, S),(R, T)$, and (S, T) are independent?
(A) (R, S) only
(B) (R, T) only
(C) (S, T) only
(D) (R, S) and (R, T) only
(E) $(R, S),(R, T)$ and (S, T)
10. (SOA) A health study tracked a group of persons for five years. At the beginning of the study, 20% were classified as heavy smokers, 30% as light smokers, and 50% as nonsmokers. Results of the study showed that light smokers were twice as likely as nonsmokers to die during the five-year study, but only half as likely as heavy smokers. A randomly selected participant from the study died over the five-year period. Calculate the probability that the participant was a heavy smoker.
(A) 0.20
(B) 0.25
(C) 0.35
(D) 0.42
(E) 0.57
11. If E_{1}, E_{2} and E_{3} are events such that $P\left[E_{1} \mid E_{2}\right]=P\left[E_{2} \mid E_{3}\right]=P\left[E_{3} \mid E_{1}\right]=p$, $P\left[E_{1} \cap E_{2}\right]=P\left[E_{1} \cap E_{3}\right]=P\left[E_{2} \cap E_{3}\right]=r$, and $P\left[E_{1} \cap E_{2} \cap E_{3}\right]=s$, find the probability that at least one of the three events occurs.
(A) $1-\frac{r^{3}}{p^{3}}$
(B) $\frac{3 p}{r}-r+s$
(C) $\frac{3 r}{p}-3 r+s$
(D) $\frac{3 p}{r}-6 r+s$
(E) $\frac{3 r}{p}-r+s$
12. (SOA) A public health researcher examines the medical records of a group of 937 men who died in 1999 and discovers that 210 of the men died from causes related to heart disease. Moreover, 312 of the 937 men had at least one parent who suffered from heart disease, and, of these 312 men, 102 died from causes related to heart disease. Determine the probability that a man randomly selected from this group died of causes related to heart disease, given that neither of his parents suffered from heart disease.
(A) 0.115
(B) 0.173
(C) 0.224
(D) 0.327
(E) 0.514
13. $\int_{\text {In }}$ a -maze, a laboratory rat is given the choice of going to the left and getting food or going to the right and receiving a mild electric shock. Assume that before any conditioning (in trial number 1) rats are equally likely to go the left or to the right. After having received food on a particular trial, the probability of going to the left and right become 0.6 and 0.4 , respectively on the following trial. However, after receiving a shock on a particular trial, the probabilities of going to the left and right on the next trial are 0.8 and 0.2 , respectively. What is the probability that the animal will turn left on trial number 2 ?
(A) 0.1
(B) 0.3
(C) 0.5
(D) 0.7
(E) 0.9
14. In the game show "Let's Make a Deal", a contestant is presented with 3 doors. There is a prize behind one of the doors, and the host of the show knows which one. When the contestant makes a choice of door, at least one of the other doors will not have a prize, and the host will open a door (one not chosen by the contestant) with no prize. The contestant is given the option to change their choice after the host shows the door without a prize. If the contestant switches doors, what is the probability that they get the door with the prize?
(A) 0
(B) $\frac{1}{6}$
(C) $\frac{1}{3}$
(D) $\frac{1}{2}$
(E) $\frac{2}{3}$
15. (SOA) A doctor is studying the relationship between blood pressure and heartbeat abnormalities in their patients. The doctor tests a random sample of the patients and notes their blood pressures (high, low, or normal) and their heartbeats (regular or irregular). The doctor finds that:
(i) 14% have high blood pressure.
(ii) 22% have low blood pressure.
(iii) 15% have an irregular heartbeat.
(iv) Of those with an irregular heartbeat, one-third have high blood pressure.
(v) Of those with normal blood pressure, one-eighth have an irregular heartbeat.

What portion of the patients selected have a regular heartbeat and low blood pressure?
(A) 2%
(B) 5%
(C) 8%
(D) 9%
(E) 20%
16. (SOA) An insurance company issues life insurance policies in three separate categories: standard, preferred, and ultra-preferred. Of the company's policyholders, 50% are standard, 40% are preferred, and 10% are ultra-preferred. Each standard policy-holder has probability 0.010 of dying in the next year, each preferred policyholder has probability 0.005 of dying in the next year, and each ultra-preferred policyholder has probability 0.001 of dying in the next year. A policyholder dies in the next year. What is the probability that the deceased policyholder was ultra-preferred?
(A) 0.0001
(B) 0.0010
(C) 0.0071
(D) 0.0141
(E) 0.2817
17. (SOA) The probability that a randomly chosen male has a circulation problem is 0.25 . Males who have a circulation problem are twice as likely to be smokers as those who do not have a circulation problem. What is the conditional probability that a male has a circulation problem, given that he is a smoker?
(A) $\frac{1}{4}$
(B) $\frac{1}{3}$
(C) $\frac{2}{5}$
(D) $\frac{1}{2}$
(E) $\frac{2}{3}$
18. (SOA) A study of automobile accidents produced the following data:

Model Year Proportion of all vehicles Probability of involvement in an accident

1997	0.16	0.05
1998	0.18	0.02
1999	0.20	0.03
Other	0.46	0.04

An automobile from one of the model years 1997, 1998, and 1999 was involved in an accident. Determine the probability that the model year of this automobile is 1997.
(A) 0.22
(B) 0.30
(C) 0.33
(D) 0.45
(E) 0.50
19. (SOA) An auto insurance company insures drivers of all ages. An actuary compiled the following statistics on the company's insured drivers:

Age of Driver Probability of Accident Portion of Company's Insured Drivers

$16-20$	0.06	0.08
$21-30$	0.03	0.15
$31-65$	0.02	0.49
$66-99$	0.04	0.28

A randomly selected driver that the company insures has an accident.
Calculate the probability that the driver was age 16-20.
(A) 0.13
(B) 0.16
(C) 0.19
(D) 0.23
(E) 0.40
20. (SOA) Upon arrival at a hospital's emergency room, patients are categorized according to their condition as critical, serious, or stable. In the past year:
(i) 10% of the emergency room patients were critical;
(ii) 30% of the emergency room patients were serious;
(iii) the rest of the emergency room patients were stable;
(iv) 40% of the critical patients died
(v) 10% of the serious patients died; and
(vi) 1% of the stable patients died.

Given that a patient survived, what is the probability that the patient was categorized as serious upon arrival?
(A) 0.06
(B) 0.29
(C) 0.30
(D) 0.39
(E) 0.64
21. Let A, B and C be mutually independent events such that $P[A]=.5, P[B]=.6$ and $P[C]=$.1. Calculate $P\left[A^{\prime} \cup B^{\prime} \cup C\right]$.
(A) 0.69
(B) 0.71
(C) 0.73
(D) 0.98
(E) 1.00
22. (SOA) An insurance company estimates that 40% of policyholders who have only an auto policy will renew next year and 60% of policyholders who have only a homeowners policy will renew next year. The company estimates that 80% of policyholders who have both an auto and a homeowners policy will renew at least one of those policies next year. Company records show that 65% of policyholders have an auto policy, 50% of policyholders have a homeowners policy, and 15% of policyholders have both an auto and a homeowners policy. Using the company's estimates, calculate the percentage of policyholders that will renew at least one policy next year.
(A) 20
(B) 29
(C) 41
(D) 53
(E) 70
23. (SOA) An actuary studied the likelihood that different types of drivers would be involved in at least one collision during any one-year period. The results of the study are presented below.

Type of driver	Percentage of all drivers	Probability of at least one collision
Teen	8%	0.15
Young Adult	16%	0.08
Midlife	45%	0.04
Senior	31%	0.05
Total	100%	

Given that a driver has been involved in at least one collision in the past year, what is the probability that the driver is a young adult driver?
(A) 0.06
(B) 0.16
(C) 0.19
(D) 0.22
(E) 0.25

PRACTICE EXAMS

Note that some of the questions on these practice exams are somewhat more challenging than the typical exam questions.

PRACTICE EXAM 1

1. \because If E and F are events for which $P[E \cup F]=1$, then $P\left[E^{\prime} \cup F^{\prime}\right]=$
(A) 0
(B) $P\left[E^{\prime}\right]+P\left[F^{\prime}\right]-P\left[E^{\prime}\right] \times P\left[F^{\prime}\right]$
(C) $P\left[E^{\prime}\right]+P\left[F^{\prime}\right]$
(D) $P\left[E^{\prime}\right]+P\left[F^{\prime}\right]-1$
(E) 1
2. Sixty percent of new drivers have had driver education. During their first year, new drivers without driver education have a probability of 0.08 of having an accident, but new drivers with driver education have only a 0.05 probability of an accident. What is the probability a new driver has had driver education, given that the driver has had no accidents the first year?
(A) $\frac{5}{6}$
(B) $\frac{0.92 \times 0.4}{0.95 \times 0.6+0.92 \times 0.4}$
(C) $\frac{0.95 \times 0.4}{0.95 \times 0.6+0.92 \times 0.4}$
(D) $\frac{0.95 \times 0.4}{0.95 \times 0.4+.92 \times 0.6}$
(E) $\frac{0.95 \times 0.6}{0.95 \times 0.6+0.92 \times 0.4}$
3. A loss distribution random variable X has a pdf of $f(x)=a e^{-x}+b e^{-2 x}$ for $x>0$. If the mean of X is 1 , find the probability $P[X<1]$.
(A) 0.52
(B) 0.63
(C) 0.74
(D) 0.85
(E) 0.96
4. The number of claims made on an insurance policy in a year has a Poisson distribution with mean 3 . The policy does not cover the first two claims but covers all claims after the first two. Determine the expected number of claims that the insurance policy will cover in one year.
(A) Less than 1.0
(B) At least 1.0 but less than 1.2
(C) At least 1.2 but less than 1.4
(D) At least 1.4 but less than 1.6
(E) At least 1.6
5. X has a binomial distribution with mean 1.5 and variance $0.375 . Y$ has a discrete uniform distribution on the integers from 1 to $3 . X$ and Y are independent. Determine $E\left[X^{Y}\right]$.
(A) 1.25
(B) 1.725
(C) 2.125
(D) 3.0
(E) 3.625
6. If X has a normal distribution with mean 1 and variance 4, then $P\left[X^{2}-2 X \leq 8\right]=$?
(A) 0.13
(B) 0.43
(C) 0.75
(D) 0.86
(E) 0.93
7. The pdf of X is $f(x)=\left\{\begin{array}{ll}2 x & \text { for } 0<x<1 \\ 0 & \text { elsewhere }\end{array}\right.$. The mean of X is μ. Find $\frac{E[|X-\mu|]}{\operatorname{Var}[X]}$.
(A) $\frac{20}{9}$
(B) $\frac{26}{9}$
(C) $\frac{32}{9}$
(D) $\frac{19}{81}$
(E) $\frac{22}{81}$
8. Two players put one dollar each into a pot. They decide to throw a pair of dice alternately. The first one who throws a total of 5 on both dice wins the pot. How much should the player who starts add to the pot to make this a fair game?
(A) $\frac{9}{17}$
(B) $\frac{8}{17}$
(C) $\frac{1}{8}$
(D) $\frac{2}{9}$
(E) $\frac{8}{9}$
9. An analysis of economic data shows that the annual income of a randomly chosen individual from country A has a mean of $\$ 18,000$ and a standard deviation of $\$ 6000$, and the annual income of a randomly chosen individual from country B has a mean of $\$ 31,000$ and a standard deviation of $\$ 8000.100$ individuals are chosen at random from Country A and 100 from Country B. Find the approximate probability that the average annual income from the group chosen from Country B is at least $\$ 15,000$ larger than the average annual income from the group chosen from Country A (all amounts are in US\$).
(A) 0.9972
(B) 0.8413
(C) 0.5000
(D) 0.1587
(E) 0.0228
10. Three individuals are running a one kilometer race. The completion time for each individual is a random variable. X_{i} is the completion time, in minutes, for person i.
X_{1} : uniform distribution on the interval $[2.9,3.1]$
X_{2} : uniform distribution on the interval $[2.7,3.1]$
X_{3} : uniform distribution on the interval $[2.9,3.3]$
The three completion times are independent of one another.
Find the expected latest completion time (nearest 0.1).
(A) 2.9
(B) 3.0
(C) 3.1
(D) 3.2
(E) 3.3
11. The amount of a claim paid by an insurer on a particular policy is a continuous random variable with pdf $f(x)=4 x^{3}$ for $0<x<1$. The insurer has three independent policies of this type. Determine the variance of the second largest of the three independent claims.
(A) 0.0120
(B) 0.0125
(C) 0.0130
(D) 0.0135
(E) 0.0140
12. A loss random variable X has a uniform distribution on the interval [0,1000].

Find the variance of the insurer payment per loss if there is a deductible of amount 100 and a policy limit (maximum insurance payment) of amount 400 (nearest 1000).
(A) 20,000
(B) 21,000
(C) 22,000
(D) 23,000
(E) 24,000
13. X has a lognormal distribution with parameters $\mu=1$ and $\sigma=1$. The probability $P[X \leq 1]$ is denoted a. The normal approximation (without integer correction) is applied to X, and the same probability is found based on the normal approximation and is denoted b. Find $b-a$.
(A) Less than 0
(B) At least 0 but less than 0.05
(C) At least 0.05 but less than 0.10
(D) At least 0.10 but less than 0.15
(E) At least 0.15
14. Let X be a random variable with mean 3 and variance 2 , and let Y be a random variable such that for every x, the conditional distribution of Y given $X=x$ has a mean of x and a variance of x^{2}. What is the variance of the marginal distribution of Y ?
(A) 2
(B) 4
(C) 5
(D) 11
(E) 13
15. Let X and Y be discrete random variables with joint probabilities given by

Y	X	1
Y	$\theta_{1}+\theta_{2}$	$\theta_{1}+2 \theta_{2}$
2	$\theta_{1}+2 \theta_{2}$	$\theta_{1}+\theta_{2}$

Let the parameters θ_{1} and θ_{2} satisfy the usual assumption associated with a joint probability distribution and the additional constraints $-0.25 \leq \theta_{1} \leq 0.25$ and $0 \leq \theta_{2} \leq 0.35$. If X and Y are independent, then $\left(\theta_{1}, \theta_{2}\right)=$
(A) $\left(0, \frac{1}{6}\right)$
(B) $\left(\frac{1}{4}, 0\right)$
(C) $\left(-\frac{1}{4}, \frac{1}{3}\right)$
(D) $\left(-\frac{1}{8}, \frac{1}{4}\right)$
(E) $\left(\frac{1}{16}, \frac{1}{8}\right)$
16. Below is the graph of the cumulative distribution function for the random variable X :

Determine the probability $P\left[2 \leq X^{2} \leq 5\right]$.
(A) 0.2379
(B) 0.3172
(C) 0.4758
(D) 0.5551
(E) 0.6344
17. For a Poisson random variable X with mean λ it is found that it is twice as likely for X to be less than 3 as it is for X to be greater than or equal to 3 . Find λ (nearest .1).
(A) 2.0
(B) 2.2
(C) 2.4
(D) 2.6
(E) 2.8
18. Let X and Y be discrete random variables with joint probability function

$$
f(x, y)= \begin{cases}\frac{2^{x+1-y}}{9} & \text { for } x=1,2 \text { and } y=1,2 \\ 0 & \text { otherwise }\end{cases}
$$

Calculate $E\left[\frac{X}{Y}\right]$.
(A) $\frac{8}{9}$
(B) $\frac{5}{4}$
(C) $\frac{4}{3}$
(D) $\frac{25}{18}$
(E) $\frac{5}{3}$
19. People passing by a city intersection are asked for the month in which they were born. It is assumed that the population is uniformly divided by birth month, so that any randomly passing person has an equally likely chance of being born in any particular month. Find the minimum number of people needed so that the probability that no two people have the same birth month is less than 0.5.
(A) 2
(B) 3
(C) 4
(D) 5
(E) 6
20. Under a group insurance policy, an insurer agrees to pay 100% of the medical bills incurred during the year by employees of a small company, up to a maximum total of one million dollars. The total amount of bills incurred, X, has probability density function

$$
f(x)= \begin{cases}\frac{x(4-x)}{9} & 0<x<3 \\ 0 & \text { otherwise }\end{cases}
$$

where x is measured in millions. Calculate the total amount, in millions of dollars, the insurer would expect to pay under this policy.
(A) 0.120
(B) 0.301
(C) 0.935
(D) 2.338
(E) 3.495
21. X has a beta distribution with parameters a and b with pdf

$$
f(x)=\frac{\Gamma(a+b)}{\Gamma(a) \times \Gamma(b)} \times x^{a-1} \times(1-x)^{b-1} \text { for } 0<x<1
$$

Assuming that $b=2 a$, find the variance of X.
(A) $\frac{1}{3(9 a+3)}$
(B) $\frac{2}{3(9 a+3)}$
(C) $\frac{1}{3(3 a+1)}$
(D) $\frac{4}{3(9 a+3)}$
(E) $\frac{5}{3(9 a+3)}$
22. A carnival gambling game involves spinning a wheel and then tossing a coin. The wheel lands on one of three colors, red, white or blue. There is a $1 / 2$ chance that the wheel lands on red, and there is a $3 / 8$ chance of white and a $1 / 8$ chance of blue. A coin of the color indicated by the wheel is then tossed. Red coins have a 50% chance of tossing a head, white coins have a $3 / 4$ chance of tossing a head, and blue coins have a $7 / 8$ chance of tossing a head. If the game player tosses a head, she wins $\$ 100$, if she does not toss a head she wins 0 . Find the cost to play the game so that the carnival wins an average of $\$ 1$ per play of the game.
(A) Less than 62
(B) At least 62 but less than 64
(C) At least 64 but less than 66
(D) At least 66 but less than 68
(E) At least 68
23. Fred, Ned and Ted each have season tickets to the Toronto Rock (Lacrosse). Each one of them might, or might not attend any particular game. The probabilities describing their attendance for any particular game are
$P[$ at least one of them attends the game $]=0.95$,
$P[$ at least two of them attend the game $]=0.80$ and
P [all three of them attend the game $]=0.50$
Their attendance pattern is also symmetric in the following way

$$
P[F]=P[N]=P[T] \text { and } P[F \cap N]=P[F \cap T]=P[N \cap T]
$$

where F, N and T denote the events that Fred, Ned and Ted attended the game, respectively. For a particular game, find the probability that Fred and Ned attended.
(A) .15
(B) .30
(C) .45
(D) . 60
(E) .75
24. An insurer will pay the amount of a loss in excess of a deductible amount α. Suppose that the loss amount has a continuous uniform distribution between 0 and $C>\alpha$. When a loss occurs, let the expected payout on the policy be $f(\alpha)$. Find $f^{\prime}(\alpha)$.
(A) $\frac{\alpha}{C}$
(B) $-\frac{\alpha}{C}$
(C) $\frac{\alpha}{C}+1$
(D) $\frac{\alpha}{C}-1$
(E) $1-\frac{\alpha}{C}$
25. Coins K and L are weighted so the probabilities of heads are 0.3 and 0.1 , respectively. Coin K is tossed 5 times and coin L is tossed 10 times. If all the tosses are independent, what is the probability that coin K will result in heads 3 times and coin L will result in heads 6 times?
(A) $\binom{5}{3}(0.3)^{3}(0.7)^{2}+\binom{10}{6}(0.1)^{3}(0.9)^{2}$
(B) $\binom{5}{3}(0.3)^{3}(0.7)^{2}\binom{10}{6}(0.1)^{6}(0.9)^{4}$
(C) $\binom{15}{9}(0.4)^{9}(0.6)^{6}$
(D) $\frac{\binom{5}{3}\binom{10}{6}}{\binom{15}{9}}$
(E) 0.6×0.9
26. An insurance policy is written that reimburses the policyholder for all losses incurred up to a benefit limit of 750 . Let $f(x)$ be the benefit paid on a loss of x. Which of the following most closely resembles the graph of the derivative of f ?
(A)

(B)

(C)

(D)

(E)

27. The value, v, of an appliance is based on the number of years since purchase, t, as follows:
$v(t)=e^{(7-0.2 t)}$. If the appliance fails within seven years of purchase, a warranty pays the owner the value of the appliance. After seven years the warranty pays nothing. The time until failure of the appliance has an exponential distribution with a mean of 10. Calculate the expected payment from the warranty.
(A) 98.70
(B) 109.66
(C) 270.43
(D) 320.78
(E) 352.16
28. A test for a disease correctly diagnoses a diseased person as having the disease with probability 0.85 . The test incorrectly diagnoses someone without the disease as having the disease with a probability of 0.10 . If 1% of the people in a population have the disease, what is the chance that a person from this population who tests positive for the disease actually has the disease?
(A) 0.0085
(B) 0.0791
(C) 0.1075
(D) 0.1500
(E) 0.9000
29. Let X and Y be discrete random variables with joint probability function $f(x, y)$ given by the following table:

Y	2	3	4	5
0	0.05	0.05	0.15	0.05
1	0.40	0	0	0
2	0.05	0.15	0.10	0

For this joint distribution, $E[X]=2.85$ and $E[Y]=1$. Calculate $\operatorname{Cov}[X, Y]$.
(A) -0.20
(B) -0.15
(C) 0.95
(D) 2.70
(E) 2.85
30. One of the questions asked by an insurer on an application to purchase a life insurance policy is whether or not the applicant is a smoker. The insurer knows that the proportion of smokers in the general population is 0.30 , and assumes that this represents the proportion of applicants who are smokers. The insurer has also obtained information regarding the honesty of applicants:

- 40% of applicants that are smokers say that they are non-smokers on their applications,
- none of the applicants who are non-smokers lie on their applications.

What proportion of applicants who say they are non-smokers are actually non-smokers?
(A) 0
(B) $\frac{6}{41}$
(C) $\frac{12}{41}$
(D) $\frac{35}{41}$
(E) 1

PRACTICE EXAM 1: SOLUTIONS

1. $P\left[E^{\prime} \cup F^{\prime}\right]=P\left[E^{\prime}\right]+P\left[F^{\prime}\right]-P\left[E^{\prime} \cap F^{\prime}\right]$.

But $E^{\prime} \cap F^{\prime}=(E \cup F)^{\prime}$, so that $P\left[E^{\prime} \cap F^{\prime}\right]=P\left[(E \cup F)^{\prime}\right]=1-P[E \cup F]=1-1=0$, so that $P\left[E^{\prime} \cup F^{\prime}\right]=P\left[E^{\prime}\right]+P\left[F^{\prime}\right]$.

Answer C
2. We define the following events:
A - the new driver has had driver education
B - the new driver has had an accident in his first year.
We are to find $P[A \mid \bar{B}]=\frac{P[A \cap \bar{B}]}{P[\bar{B}]}$, and we are given $P[A]=.6, P[B \mid \bar{A}]=0.08$, and $P[B \mid A]=0.05$. Using rules of probability, $P[\bar{B} \mid A]=1-P[B \mid A]=0.95$, and hence, $P[A \cap \bar{B}]=P[\bar{B} \mid A] \times P[A]=0.95 \times 0.6$.Also, $P[\bar{A}]=1-P[A]=0.4$.
But, $P[\bar{B} \mid \bar{A}]=1-P[B \mid \bar{A}]=1-.08=0.92$, and hence
$P[\bar{A} \cap \bar{B}]=P[\bar{B} \mid \bar{A}] \times P[\bar{A}]=0.92 \times 0.4$.
Thus, $P[\bar{B}]=P[A \cap \bar{B}]+P[\bar{A} \cap \bar{B}]=0.95 \times 0.6+.92 \times 0.4$, and then
$P[A \mid \bar{B}]=\frac{P[A \cap \bar{B}]}{P[\bar{B}]}=\frac{0.95 \times 0.6}{0.95 \times 0.6+0.92 .4}$.
Answer E
3. $f(x)=a e^{-x}+b e^{-2 x} \rightarrow \int_{0}^{\infty} f(x) d x=a+\frac{1}{2} b=1$.

We use the following integral rule for integer $k \geq 0$ and $c>0, \int_{0}^{\infty} x^{k} e^{-c x} d x=\frac{k!}{c^{k+1}}$, to get

$$
E[X]=\int_{0}^{\infty} x f(x) d x=a+\frac{1}{4} b=1 .
$$

Solving the equations results in $a=1, b=0$. The probability is
$P[X<1]=\int_{0}^{1} e^{-x} d x=1-e^{-1}=0.632$
Answer B
4. We denote the number of claims in a year by N, a Poisson random variable with mean 3 . The number of claims covered by the insurer is $\max \{0, N-2\}$, which is the number of claims above 2 . This is algebraically the same as a deductible of 2 applied to N. For any non-negative random variable X, when applying a deductible d to X it is always the case that $\max \{0, X-d\}=X-\min \{X, d\}$, so that $E[\max \{0, X-d\}]=E[X]-E[\min \{X, d\}]$. Note that $\min \{X, d\}$ is the amount paid on a loss of amount X up to a limit of d. It is the case for most probability distributions that it is easier to calculate min $\{X, d\}$ than $\max \{0, N-2\}$. In this case $d=2$ and

$$
\min \{N, 2\}=\left\{\begin{array}{lll}
0 & N=0 & \text { prob. } N=0 \\
1 & N=1 & \text { prob. } N=1 \\
2 & N \geq 2 & \text { prob. } N \geq 2
\end{array}\right.
$$

Scan QR codes for more product details at www.ActexMadRiver.com

Actuarial University Bootcamps for Exam P \& FM Gabriel Necoechea, PhD | Joe Sadow

Finalize your preparation for SOA Exam P or FM with Actuarial University Bootcamp!

This highly intensive, 3-part live online instruction course meets on the three Saturdays leading up to each SOA Exam P or FM sitting. During the live sessions hosted by your experienced instructor, exam material will be
 reviewed with special focus on harder topics, common errors, and exam strategy.

Sessions will consist of Professor Necoechea or Sadow guiding the class through key examples and answering any particular questions that students would like to discuss. Beyond that, your instructor will assign select review exercises to guide your study (using Academic GOAL), and will be available for Q\&A email correspondence.

ACTEX Exam Prep Online Courses - Your Path to Exam Success. Full time students are eligible for a 60\% discount on ACTEX Exam Preparation courses!

- Live discussion forums.
- Timed practice tests with video solutions.
- Emphasises problem-solving techniques.
- Comparable to a one-semester, undergraduate level course.
- Responsive, student focused instructors, with engaging style and helpful support.
- Comprehensive instructor support, video lectures, and suggested
 exercises/solutions. Supplemental resources including GOAL, formula sheets, flashcards, and more!
- Students will have one-on-one support from the instructor(s) for the duration of the course.
- Companion manual (required) includes GOAL, formula sheet, virtual eFlashcards, technical skill webinars, and more useful features.

ACTEX Online Courses for VEE Credit - SOA \& CAS Approved Online Courses Accounting | Mathematical Statistics | Microeconomics | Macroeconomics

- Pass Guarantee: Students unable to achieve a passing score may retake the entire course, or just the final examination only, one time, at no additional charge.
- CBT or Paper \& Pencil Exams: Students can arrange a CBT final exam or be mailed a paper and pencil exam.
- Flexible final exam dates: Our on-demand courses with CBT final exams
 allow students to choose their exam date and time with no restrictions.
- Proctoring Service: Our VEE Courses have a graded final exam requiring a proctor. Students have the option to use a convenient remote proctoring service, ProctorU, for their exam.

What's Your ©OAL?

We'll help you break it down.

Practice

Simulated Exams

Review Results

Your GOAL Score

Target GOAL Score
70

Customizable Exam Prep

- Three Learning Modes:
- Practice
- Quiz
- Simulated Exams
- Three Difficulty Levels
- Core
- Advanced
- Mastery

Practice. Predict. Pass.

Using GOAL Score to gauge your readiness

- Measure how prepared you are to pass your exam with a tool that suits any study approach.
- Flag problem areas for later, receive tips when you need them
- Analyze your strengths and weaknesses by category, topic, level of difficulty, performance on exercises, and consistency of your performance.
- A score of 70 or higher indicates you're ready for your exam, giving you a clear milestone in your studies.

