Differences between NPV, Decision Trees, and Real Options
1. NPV is flawed because it systematically undervalues everything due to simplifying assumptions
 a. Ignores options to expand, extend, contract, abandon and defer projects
 i. All expected cash flows are pre-committed
 b. Real option analysis uses decision trees to model optimal actions in the future given
 the resolution of uncertainty

2. NPV and ROA also deal with mutually exclusive options differently
 • NPV forces pre-commitment to one of many false mutually exclusive decisions, say the decision to defer for one year or two years
 • ROA works backward to arrive at the optimal deferral decision

3. Decision trees make state-contingent future decisions but with a constant discount rate, while ROA changes the discount rate at each branch if necessary
 • Replicating portfolio made up of default-free bonds and a twin security are used to hedge the option

Source: Financial Theory and Corporate Policy, Chapter 9
Risk Measures – Quantile
Definition: \(\alpha \)-quantile risk measure is the \((N\alpha)^{th} \) value of the projected liability values

Confidence Interval: \((L_0(N\alpha-A), L_0(N\alpha+A)) \), where \(A = \Phi^{-1}\left(\frac{1+\beta}{2}\right)\sqrt{N\alpha(1-%alpha)} \).

For GMMB, assume \(F_k = S_k (1-m)^k \) and stock returns follow lognormal process, then

\[
\Pr(G < F_n) = \xi = 1 - \Phi\left(\sigma\sqrt{n} \frac{\log(G/S_0) - n(\mu + \log(1-m))}{\sigma\sqrt{n}}\right)
\]

and \(V_{\alpha} = e^{-rn} (G - F_0 e^{-z\alpha\sigma\sqrt{n} + n[\mu + \log(1-m)]}) \): quantile risk measure

Quantile Negatives:

- not bounded below by mean loss
- not subadditive
- determined by only one point on loss distribution \(\rightarrow \) sampling volatility

Source: *Investment Guarantees*, Chapter 9, pages 159-160, 162, 168-169
The Positive Announcement Effect of Tender Offers on Share Price: Five Separate Hypotheses
<table>
<thead>
<tr>
<th>Hypothesis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Information or signaling</td>
<td>Positive signal: Firm is expected to have increased future cash flows. Negative signal: Firm has exhausted profitable investment opportunities.</td>
</tr>
<tr>
<td>Leverage tax shield</td>
<td>If financed via a debt offering, firm leverage increases and so too does the tax shield.</td>
</tr>
<tr>
<td>Dividend tax avoidance</td>
<td>If more than 20% of a shareholder’s holdings are sold back to the firm, the gains from repurchase are treated as capital gains rather than a dividend.</td>
</tr>
<tr>
<td>Bondholder expropriation</td>
<td>If repurchase reduces asset base of firm, bondholders are worse off because they have less collateral.</td>
</tr>
<tr>
<td>Wealth transfer among shareholders</td>
<td>Some shareholders will decide not to tender their shares due to different constraints, costs and/or information.</td>
</tr>
</tbody>
</table>

Source: Financial Theory and Corporate Policy, Chapter 16
Shareholder Rule
\(V_N(F) \) = Value of firm’s assets after loss before repair
\(V_R(F) \) = Value of firm’s assets after loss AFTER repair
\(C \) = Cost of repair, Assumed < \(V_R(F) - V_n(F) \)
\(P_N \) = Value Default put option with NO asset repair
\(P_R \) = Value Default put option WITH asset repair

Shareholder implements repair if:

\[(V_R(F) + P_R) - (V_N(F) + P_N) \geq C \]

\(\text{i.e } NPV - P_N + P_R \geq C \)

Characteristics of Corporate Debt Markets
Key Liability Characteristics
1. maturity
2. priority
3. covenants

<table>
<thead>
<tr>
<th>Issuer Type</th>
<th>Multinational Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>corporations</td>
<td>Eurobonds</td>
</tr>
<tr>
<td>governments</td>
<td>foreign bonds</td>
</tr>
<tr>
<td>individuals</td>
<td>syndicated loans</td>
</tr>
<tr>
<td>Maturity</td>
<td>Covenants</td>
</tr>
<tr>
<td>commercial paper</td>
<td>default triggers</td>
</tr>
<tr>
<td>intermediate term</td>
<td>cash flow controls</td>
</tr>
<tr>
<td>long-term bonds</td>
<td>operating controls</td>
</tr>
<tr>
<td></td>
<td>strategy controls</td>
</tr>
</tbody>
</table>

Source: FET-160-08, Corporate Finance Theory, Chapter 9, pages 402-408
Currency Swap
Exchange of currency principal is important

4% $ interest +
15 million $ principal

7% sterling interest +
10 million Sterling
Principal

Source: Hull, Chapter 7
Analytic Calibration of RSLN
1. Conditional on R_n, the accumulation factor is lognormal with

$$\mu^*(R_n) = R_n \mu_1 + (n - R_n) \mu_2 \quad \text{and} \quad \sigma^*(R_n) = \sqrt{R_n \sigma_1^2 + (n - R_n) \sigma_2^2}$$

2. The unconditional distribution function $F_{S_n}(x)$ is

$$F_{S_n}(x) = \sum_{r=0}^{n} \phi \left(\frac{\log x - \mu^*(r)}{\sigma^*(r)} \right) p_n(r)$$

3. Then input MLE parameters into this analytic distribution function and calculate the resulting quantiles in order to compare them to the calibration points.

Source: *Investment Guarantees*, Chapter 4, pages 65-75
Nash Equilibrium (NE) vs. Bayesian Nash Equilibrium (BNE)
<table>
<thead>
<tr>
<th>Assumptions</th>
<th>NE</th>
<th>BNE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simultaneous-move game with complete information</td>
<td>Simultaneous-move game with incomplete information</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Payoffs</th>
<th>$u_i(a_i,a_i) = u_{Chris}(\text{Steak}{Chris}, \text{Red Wine}{Pat})$</th>
<th>$u_i(a_i,a_i; t_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$= u_{Chris}(\text{Steak}{Chris}, \text{Red Wine}{Pat}, t_{Chris})$</td>
<td>$= \text{Chris’s additional private utility for steak and red wine}$</td>
</tr>
</tbody>
</table>

| Def of Strategy | Action rule; ex: in the incomplete Dating game, Chris’s strategy was a rule specifying his action for each possible value of t_c. | Action; ex: in the complete Dating game, Chris’s strategy was simply to choose steak or chicken. |

| Def of Equilibrium | Pair of strategies such that each player’s strategy is the best response to the other player’s strategy where “strategy” is defined above for NE. | Pair of strategies such that each player’s strategy is the best response to the other player’s strategy where “strategy” is defined above for BNE. |

Source: FET-156-08: An Introduction to Applicable Game Theory