Differences between NPV, Decision Trees, and Real Options

- 1. NPV is flawed because it systematically undervalues everything due to simplifying assumptions
 - a. Ignores options to expand, extend, contract, abandon and defer projects i. All expected cash flows are pre-committed
 - b. Real option analysis uses decision trees to model optimal actions in the future given the resolution of uncertainty
- 2. NPV and ROA also deal with mutually exclusive options differently
 - NPV forces pre-commitment to one of many false mutually exclusive decisions, say the decision to defer for one year or two years
 - ROA works backward to arrive at the optimal deferral decision
- 3. Decision trees make state-contingent future decisions but with a constant discount rate, while ROA changes the discount rate at each branch if necessary
 - Replicating portfolio made up of default-free bonds and a twin security are used to hedge the option

Source: Financial Theory and Corporate Policy, Chapter 9

Risk Measures – Quantile

Definition: α -quantile risk measure is the $(N\alpha)^{th}$ value of the projected liability values

Confidence Interval:
$$(L_{0(N\alpha-A)}, L_{0(N\alpha+A)})$$
, where $A = \Phi^{-1}\left(\frac{1+\beta}{2}\right)\sqrt{N\alpha(1-\alpha)}$.

For GMMB, assume $F_k = S_k (1-m)^k$ and stock returns follow lognormal process, then

$$\Pr(G < F_n) = \xi = 1 - \Phi\left(\sigma\sqrt{n} \frac{\log(G/S_0) - n(\mu + \log(1-m))}{\sigma\sqrt{n}}\right)$$

and $V_{\alpha} = e^{-rn} (G - F_0 e^{-z_{\alpha}\sigma\sqrt{n} + n[\mu + \log(1-m)]})$: quantile risk measure

Quantile Negatives:

- not bounded below by mean loss
- not subadditive
- determined by only one point on loss distribution \rightarrow sampling volatility

Source: Investment Guarantees, Chapter 9, pages 159-160, 162, 168-169

The Positive Announcement Effect of Tender Offers on Share Price: Five Separate Hypotheses

Hypothesis			
Information or	Positive signal: Firm is expected to have increased		
signaling	future cash flows.		
	Negative signal: Firm has exhausted profitable		
	investment opportunities.		
Leverage tax shield	If financed via a debt offering, firm leverage		
	increases and so too does the tax shield.		
Dividend tax	If more than 20% of a shareholder's holdings are		
avoidance	sold back to the firm, the gains from repurchase are		
	treated as capital gains rather than a dividend.		
Bondholder	If repurchase reduces asset base of firm, bondholders		
expropriation	are worse off because they have less collateral.		
Wealth transfer	Some shareholders will decide not to tender their		
among shareholders	shares due to different constraints, costs and/or		
	information.		

Source: Financial Theory and Corporate Policy, Chapter 16

Shareholder Rule

 $V_N(F)$ = Value of firm's assets after loss before repair

 $V_R(F)$ = Value of firm's assets after loss AFTER repair

 $C = \text{Cost of repair, Assumed} < V_R(F) - V_n(F)$

- P_N = Value Default put option with NO asset repair
- P_R = Value Default put option WITH asset repair

Shareholder implements repair if:

$$(V_R(F) + P_R) - (V_N(F) + P_N) \ge C$$
 i. e $NPV - P_N + P_R \ge C$

Source: FET-108-07, Integrated Risk Management page 494

Characteristics of Corporate Debt Markets

Key Liability Characteristics

- 1. maturity
- 2. priority
- 3. covenants

Issuer Type	Multinational Issues
corporations	Eurobonds
governments	foreign bonds
individuals	syndicated loans
Maturity	Covenants
commercial paper	default triggers
intermediate term	cash flow controls
long-term bonds	operating controls
	strategy controls

Source: FET-160-08, Corporate Finance Theory, Chapter 9, pages 402-408

Currency Swap

Exchange of currency principal is important

Source: Hull, Chapter 7

Analytic Calibration of RSLN

© ACTEX 2010

Section IV - 15

1. Conditional on R_n , the accumulation factor is lognormal with

$$\mu^*(R_n) = R_n \mu_1 + (n - R_n) \mu_2$$
 and $\sigma^*(R_n) = \sqrt{R_n \sigma_1^2 + (n - R_n) \sigma_2^2}$

2. The unconditional distribution function $F_{S_n}(x)$ is

$$F_{S_n}(x) = \sum_{r=0}^{n} \varphi \left(\frac{\log x - \mu^*(r)}{\sigma^*(r)} \right) p_n(r)$$

3. Then input MLE parameters into this analytic distribution function and calculate the resulting quantiles in order to compare them to the calibration points

Source: Investment Guarantees, Chapter 4, pages 65-75

© ACTEX 2010

Section IV - 16

Nash Equilibrium (NE) vs. Bayesian Nash Equilibrium (BNE)

	NE	BNE
Assumptions	Simultaneous-move game with	Simultaneous-move game with
	complete information	incomplete information
Payoffs	$u_i(a_i,a_i) =$	$u_i(a_i,a_i;t_i)$
	u _{Chris} (Steak _{Chris} , Red Wine _{Pat}	$= u_{Chris}(Steak_{Chris}, Red Wine_{Pat}, t_{Chris})$
		= Chris's additional private utility
		for steak and red wine)
Def of	Action rule; ex: in the incomplete	Action; ex: in the complete Dating game,
Strategy	Dating game, Chris's strategy was a	Chris's strategy was simply to choose steak
	rule specifying his action for each	or chicken.
	possible value of t_c .	
Def of	Pair of strategies such that each	Pair of strategies such that each player's
Equilibrium	player's strategy is the best response to	strategy is the best response to the other
	the other player's strategy where	player's strategy where "strategy" is
	"strategy" is defined above for NE.	defined above for BNE.

Source: FET-156-08: An Introduction to Applicable Game Theory