SOA Exam M
 Life Contingencies
 Flashcards

Fall 2011 exams

Key concepts
Important formulas
Efficient methods
Advice on exam technique

All study material produced by BPP Professional Education is copyright and is sold for the exclusive use of the purchaser.

You may not hire out, lend, give out, sell. store or transmit electronically or photocopy any part of the study material.

You must take care of your study material to ensure that it is not used or copied by anybody else Legal action will be taken if these terms are infringed.

In addition, we may seek to take disciplinary action through the profession or through your employer.

CONTENTS

Contents	page
How to use these flashcards	2
Survival models	3
Life insurance	12
Life annuities	20
Annual benefit premiums	27
Benefit reserves	33
Multiple life models	38
Multiple decrement models	44
Models with expenses	51
The Poisson process	56
Multi-state cash flow models	63

MULTIPLE DECREMENT MODELS

Tabular multiple decrement model

In a tabular model you are given a joint distribution of $K=[T]$, the curtate time until decrement, and J. The joint probability function gives the probability that decrement occurs in year $k+1$ due to cause j :

$$
\left.\operatorname{Pr}(K=k \text { and } J=j)=\frac{d_{x+k}^{(j)}}{l_{x}^{(\tau)}}=k \right\rvert\, q_{x}^{(j)}
$$

From the table you can compute $q_{x}^{(j)}$. However, you will be unable to compute $q_{x}^{(j)}$ without the help of an interpolation assumption to extend the discrete model to a continuous one There is however one general relation between the probabilities $\left\{q_{x}^{(j)}\right\}$ and the absolute rates $\left\{q_{x}^{\prime(j)}\right\}$:
$\sum_{j=1}^{r} q_{x}^{(j)}=q_{x}^{(\tau)}=1-p_{x}^{(\tau)}=1-\prod_{j=1}^{r} p_{x}^{(j)}$
$=1-\prod_{j=1}^{r}\left(1-q_{x}^{\prime(j)}\right) \Rightarrow$
$r=2 \quad q_{x}^{(1)}+q_{x}^{(2)}=q_{x}^{(1)}+q_{x}^{(2)}-q_{x}^{(1)} q_{x}^{(2)}$
$r=3 \quad q_{x}^{(1)}+q_{x}^{(2)}+q_{x}^{(3)}=q_{x}^{\prime(1)}+q_{x}^{\prime(2)}+q_{x}^{\prime(3)}$

$$
-q_{x}^{\prime(1)} q_{x}^{\prime(2)}-q_{x}^{\prime(1)} q_{x}^{\prime(3)}-q_{x}^{\prime(2)} q_{x}^{\prime(3)}
$$

$$
+q_{x}^{\prime(1)} q_{x}^{\prime(2)} q_{x}^{\prime(3)}
$$

MULTIPLE DECREMENT MODELS

Common interpolation methods

In the following, x is an integer age and $0 \leq t \leq 1$

1. The UDD assumption in each single decrement model (SUDD)

$$
\begin{aligned}
& { }_{t}{ }_{x}^{(j)}=t \cdot q_{x}^{q_{x}^{(j)}} \text { or }{ }_{t} t_{x}^{(j)}=1-t \cdot q_{x}^{(j)} \Rightarrow \\
& { }_{t}^{\prime p_{x}^{(j)}} \mu^{(j)}(x+t)=q_{x}^{q_{x}^{(j)} \Rightarrow} \\
& q_{x}^{(j)}=\int_{0}^{1}{ }_{t} p_{x}^{(\tau)} \cdot \mu^{(j)}(x+t) d t \\
& \quad=\int_{0}^{1}\left(\prod_{i \neq j} t_{x}^{(i)}\right) \cdot \underbrace{t p_{x}^{(j)} \mu^{(j)}(x+t)}_{q_{x}^{(j)}} d t=q_{x}^{(j)} \int_{0}^{1}\left(\prod_{i \neq j} t p_{x}^{(i)}\right) d t
\end{aligned}
$$

If there are $r=3$ modes of decrement and $\{i, j, k\}=\{1,2,3\}$, then the relation is:

$$
q_{x}^{(j)}=q_{x}^{\prime(j)}\left(1-\frac{1}{2}\left(q_{x}^{\prime(i)}+q_{x}^{\prime(k)}\right)+\frac{1}{3}\left(q_{x}^{\prime(i)} q_{x}^{\prime(k)}\right)\right)
$$

For the 2 decrement version set $q_{x}^{(k)}=0$.
2. The UDD assumption for each decrement in the multiple decrement table (MUDD

$$
\begin{aligned}
& t q_{x}^{(j)}=t \cdot q_{x}^{(j)} \text { for all } j \Rightarrow \\
& q_{x}^{(j)}=q_{x}^{(\tau)} \cdot \frac{\ln \left(p_{x}^{(j)}\right)}{\ln \left(p_{x}^{(\tau)}\right)} \quad \Leftrightarrow \quad p_{x}^{(j)}=\left(p_{x}^{(\tau)}\right)^{q_{x}^{(j)} / q_{x}^{(\tau)}}
\end{aligned}
$$

MULTIPLE DECREMENTMODELS
Example. Suppose that $q_{x}^{(1)}=.10, q_{x}^{\prime(2)}=.05$. Calculate $q_{x}^{(1)}$.
SUDD: $q_{x}^{(1)}=q_{x}^{(1)}\left(1-\frac{1}{2} \cdot q_{x}^{(2)}\right)=.10(1-.5(.05))=.09750$
$\begin{aligned} \text { MUDD: } q_{x}^{(1)} & =q_{x}^{(\tau)} \cdot \frac{\ln \left(p_{x}^{\prime(1)}\right)}{\ln \left(p_{x}^{(\tau)}\right)}=(1-(.90 \times .95)) \cdot \frac{\ln (.90)}{\ln (.90 \times .95)} \\ & =.09752\end{aligned}$
$=.09752$

Discrete decrement patterns

The above theory assumes that each decrement occurs continuously (T_{j} is a continuous random variable). The formula

$$
q_{x}^{(j)}=\int_{0}^{1} \underbrace{\left(\prod_{i \neq t} p_{x}^{\prime(i)}\right)}_{\begin{array}{c}
\text { probability of surviving other } \\
\text { decrements for tyears }
\end{array}} \cdot \underbrace{f_{t}^{\prime(j)} \mu^{(j)}(x+t) d t}_{\begin{array}{c}
f_{T_{j}}(t) d t-\text { an element } \\
\text { of } T_{j} \text { probability }
\end{array}}
$$

can be reinterpreted to provide a method for dealing with decrement j when it follows a discrete pattern:

If decrement j can occur at times $0 \leq t_{1}<\cdots<t_{n} \leq 1$ with respective probabilities $p_{1}, p_{2}, \ldots, p_{n}$, then

$$
q_{x}^{(j)}=\sum_{i=1}^{n}\{\underbrace{\prod_{k \neq t_{i}} p_{x}^{\prime(k)}}_{\begin{array}{c}
\text { probability of surviving } \\
\text { other decrements for } t_{i} \text { years }
\end{array}} \cdot \underbrace{p_{i}}_{\begin{array}{c}
\text { probability of decrement } j \\
\text { occurring at time } t_{i}
\end{array}}\}
$$

MULTIPLE DECREMENT MODELS
Example. Calculate $q_{x}^{(2)}$ given $q_{x}^{\prime(1)}=.10, q_{x}^{\prime(2)}=.08$, decrement 1 is SUDD, and decrement 2 occurs half at mid-year and half at year-end. It follows that:

$$
\begin{aligned}
& t_{1}=.50, t_{2}=1.00, p_{1}=.08 / 2=.04, p_{2}=.08 / 2=.04 \\
& { }_{t} p_{x}^{\prime(1)}=1-t \cdot q_{x}^{\prime(1)}=1-.10 t \Rightarrow \\
& { }_{t_{1}} p_{x}^{\prime(1)}=.50 p_{x}^{\prime(1)}=1-.10(.50)=.95 \\
& t_{2} p_{x}^{\prime(1)}=1.00 p_{x}^{\prime(1)}=1-.10(1.00)=.90 \\
& q_{x}^{(2)}={ }_{1} p_{x}^{\prime(1)} \cdot \operatorname{Pr}\left(T_{2}=t_{1}\right)+{ }_{{ }_{2}} p_{x}^{\prime(1)} \cdot \operatorname{Pr}\left(T_{2}=t_{2}\right) \\
& \quad=(.95)(.04)+(.90)(.04)=.074
\end{aligned}
$$

Benefits depending on the time and mode of decrement

Suppose that an amount $b_{T, J}$ is paid at the time of decrement T if J is the mode of decrement. The random present value of the benefit is $Z=b_{T, J} \cdot v^{T}$. It is a function of T and J, so moments of Z can be computed as follows:

$$
E\left[Z^{k}\right]=\sum_{j=1}^{r} \int_{0}^{\infty}\left(b_{t, j} v^{t}\right)^{k} f_{T, J}(t, j) d t
$$

THE POISSON PROCESS

Example of thinning

- An insurer wishes to institute an ordinary deductible of d per loss. Let C_{1} denote the category of losses that exceed the deductible, and let C_{2} denote the category of losses that are less than or equal to the deductible: $p_{1}=\operatorname{Pr}(X>d)$. Then $N_{1}(t)$ is a Poisson process with rate $\lambda_{1}=\lambda p_{1}=\lambda \operatorname{Pr}(X>d)$. This is the frequency of payment events for the insurer over a period of t years.
- Losses could be categorized by types. Suppose we have losses against car insurance policies and we want to eliminate broken windshield losses from coverage when 3% of claims are for broken windshields. To know the frequency of losses after this elimination define category C_{1} for windshield losses, and category C_{2} for all other types of losses. The Poisson process $N_{2}(t)$ would then have a rate equal to $\lambda_{2}=\lambda p_{2}=0.97 \lambda$.

Non-homogeneous Poisson process

Denote the process rate at time t for a non-homogeneous Poisson process by $\lambda(t)$. The mean value function for this process is defined by $m(t)=\int_{0}^{t} \lambda(s) d s$.

