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Preface

Rob is one of the smartest actuaries I have met. He told me that when he drives in Chicago, he typically follows the
flow of the traffic, which means that he is driving at least 10 miles per hour faster than the speed limit. He said that if
he drives under the speed limit he might be hit by a speeding car because everyone else is speeding. “In addition, why
would I want time to tick away from me?” said Rob.

What hit me was his phrase “Why do I want time to tick away from me?” If you are reading this book, chances are
that you a college student or a serious career switcher wanting to enter the actuarial profession. Or you are already an
actuary wanting to get your ASA or FSA. No matter who you are, you are busy and you have no time to waste. You
want to get the MLC done and move on with you life.

This is exactly the purpose of this book: to help you better prepare for MLC so you don’t waste a whole lot time.

My story

I came to U.S. when I was in my late twenties. I started my first corporate job in U.S. in the IT department of a large
insurance company. After working there for about 2 years, I was ready to switch my career. If you have ever worked in
a large IT department or any large department of a large company, you’ll find that there are thousands of people just
like you who go to the same building in the morning around the same time you go to the building and who leave the
same building in the afternoon around the same time you leave the building. The company’s giant parking lots were
filled with thousands of cars, one of which was my second hand red Toyota Camry. The building is nice. Coworkers are
nice. But I felt like a drop of water in the ocean.

I was floating around not sure how to make use of my life. Then one day I heard the actuary profession. I heard
that if you were an actuary, you were among the elite group because there weren’t enough actuaries to go around. I
was interested. I decided to study for P. By that time, I hadn’t touched calculus for 13 years. Fortunately, it took me
just a couple of months to relearn calculus. I took P and got a 9. I was overjoyed. I applied for a job in the actuary
department and became an actuary.

When I became an entry level actuary, I was in my early 30’s, about 8 years older than most of my peers, who got the
actuary job straight from college. To quickly pass actuary exams, I used a bold strategy: reverse engineering. This is
not for the faint of the heart. Think twice before you try it. It works like this. Before I took an exam, say MLC, I used
a company printer and printed out all the released MLC exam papers and the official solution papers. There was a stack
of paper on my desk. From the stack, I pulled out the most recent exam paper, looked up the SOA solutions, looked up
the subject from the textbook, and studied the subject. Then I moved to the next exam paper. I call this just-in-time
study, similar to the just-in-time inventory method used in Toyota and many other auto manufacturing plants around
the world.

how to pass MLC or any actuary exam

Based on my experience of studying for actuary exams, I firmly believe that to pass an actuary exam you need to do 2
things: (1) you have to understand the core concepts, and (2) you have to be able to quickly solve the types of problems
SOA likes to test.

Building a coherent body of knowledge of the subject matter is the most critical and the most time-consuming part of
studying for an actuary exam. If you walk into the exam room muddleheaded or with scanty knowledge of basic theories,
none of the tips or tricks you learned in an exam prep book would save you. Any chess master will tell you that there
are no shortcuts in learning chess. You just have to know your stuff!

However, knowing the subject well doesn’t guarantee passing the exam or earning a high grade any more than good
technical skills guarantee a job offer. It’s a sad reality that often those who know how to play the interview game get the
job. When you take actuary exams, your knowledge is measured by your ability to solve the SOA style questions. To
pass MLC, you’ll need to immerse yourself in the types of problems SOA likes to test or you’ll be one of those “theory
smart, exam poor” people.

One key part of studying the SOA exam papers is to identify commonly tested problem types and learn how to solve
them quickly. For example, finding the UL account value is tested in virtually every exam. Your first round of effort is
to understand what is UL, what is Type A and Type B, what is COI, what is corridor, and how the UL account value
builds up overtime. After you understand these basic concepts, you face a choice about how to find the Type A UL
account value. Should you solve two linear equations on AVt and COIt or should you memorize the formulas for AVt
and COIt to avoid having to solve two equations in the exam? You might try both approaches and see which method
suits you. You might find that there’s no clear winner and that you want to learn both. However, before taking the
exam, you must have a tried-and-true procedure for calculating the Type A UL account value. You don’t want to walk
into exam empty handed without a proven method in your head.

Here’s the final point. It’s not absolutely necessary, but it helps. Most people’s performance will downgrade in the
heat of the exam. To be safe, strive to learn at least a little bit more than the minimal knowledge required to pass MLC.
When I was studying an old exam paper, I often asked myself “How can I make this problem harder?” If I saw a subject
that was in the syllabus but that was not tested in the past, I often forced myself to learn at least a little bit about
it. Even if the subject didn’t show up in the test, knowing that I was not a complete idiot on the subject reduced my
anxiety.
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iv PREFACE

know your stuff

Google Maps are handy especially when you go to a new place, but I hope you know how to get to your work or school
when you left your phone at home or there’s no internet connection. Over the years, I have developed many alternative
routes for my daily commute. If route A is closed, I know what an alternative route to go. I know which road tends
to be jammed by school buses, which road is more likely to have accidents, which alley is slippery when it snows. This
knowledge serves me well. Just the other day, while I was driving to work, the road I took had a car accident. While
most drivers were stuck in the traffic, I knew the exact small neighborhood that I needed to turn to bypass the traffic
jam.

In virtually every career you choose, there’s no substitute for learning the basics for doing the job. To study for MLC,
you just have to learn the fundamentals: the force of mortality, the multiple state model, profit testing, to name a few.

a simple procedure beats the best mind

I remember a story I learned from a computer programming book. The story goes like this. A town in the Midwest
has two coffee shops, A and B. If you visit Shop A, sometimes you can get coffee right away but other times they run
out of coffee and you have to wait a little while. Shop B, on the other hand, always has coffee ready for a customer
who just walks in. Both shops are in the same town and their workers have roughly the same skills. How does Shop B
outsmart Shop A? In turns out that Shop B has a simple procedure. If you work in Shop B, from Day One you learn
this rule: when existing coffee in a container reaches a certain low level, stop whatever you are doing and immediately
start brewing new coffee. This procedure makes all the difference.

A procedure in programming is called an algorithm. When studying for an actuary exam, you’ll need to build
algorithms for commonly tested problems to avoid having to reinvent the wheel in the heat of the exam. When the big
exam day comes, most of the problem types in the exam should be familiar to you and your job is just to recall pre-built
algorithms. Don’t purposely put yourself on the spot without an algorithm for finding the Type A UL account value.
You have only several minutes per exam problem and in the heat of the exam it’s really hard to invent a solution to an
unseen problem type.

what you get from this book

In this book, I aim for 3 things:

• to teach you how to solve frequently tested problems. First and foremost, this is a problem solver book. I have
no interest in regurgitating the AMLCR textbook. I throw you into problems right away and you either swim or
sink. If you can solve my problems and understand my approach to problems, you are in good shape.

• to teach you core concepts. All my problems are designed to help you learn the fundamental concepts of MLC.
I want you to understand, not just memorize. For example, if you understand that the two-term Woolhouse’s
formula is just the plain old trapezoidal rule, memorizing the Woolhouse’s formula is far easier and more enjoyable.
You’ll get a headache if you swallow Woolhouse’s formula without knowing why it works. With understanding
comes newfound freedom and confidence.

• to challenge you a little bit. I purposely made many of my problems somewhat harder than the SOA problems,
but my hard problems are still in the syllabus and are what you need to need. I want you to aim high.

acknowledgement

First, I want to thank two actuaries, Nathan Hardiman and Robin Cunningham, for their generosity. They gave me
their Arch manual for the then Course 3 or Exam M practically free. Years ago they wrote a really good study manual
called Arch for the then MLC. You might not know that of all the exams for ASA, MLC changes most frequently. For
example, if you dig through old Course 3 exam papers, you’ll find the famous problem of “lucky Tom finds coins at the
Poisson rate of ... per hour.” The Poisson distribution or Poisson process was a hot topic dreaded by many. To your
relief, SOA dropped the Poisson process from the syllabus. Anyway, Nathan and Robin have their full time corporate
actuarial jobs and couldn’t keep up with frequent changes in the exam syllabus. Instead of withdrawing their Arch book
from the market and letting their brain child die, they decided to give the Arch manual to another author. Since I wrote
many study manuals, they gave me the book.

The Arch manual was a turning point for me technically. After downloading their manuscript from my email, I found
out that Arch was written in LATEX, not in Word. That was the first time I saw LATEX code. At at time, I was looking
for a solution to a long standing problem of Word crashing on me. Arch was a god sent. From Arch, I learned LATEX
and switched from Word to LATEX for my future books.

In addition, I want to thank the many LATEX contributors for their wonderful packages. Without LATEX or many of
its special packages, this book isn’t possible.

Finally, I think you, dear reader, for reading the thoughts and reasoning I came up with after my actuarial day job.
I hope you find this book useful. If you end up using this book, I thank you for the opportunity of being part of your
journey into the actuarial dream land.

outlook of actuary profession

According to the U.S. Bureau of Labor Statistics, employment of actuaries is projected to grow 18% from 2014 to 2024,
much faster than the average for all occupations. What are you waiting for? Study for MLC today!
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FAQ

Does this book cover the entire syllabus?
Yes. The entire syllabus is covered.

Is this book sufficient for passing MLC?
No author can guarantee that if you read his book you will surely pass MLC. That said, if you can master this
book and master the SOA exam papers, you have built a solid foundation for passing MLC.

What companion book do you recommend to use along side with this book?
You can use this book together with your favorite study guide. If you are not sure what other study guide to use,
you can use this book together with the AMLC textbook and the SOA exam papers.

errata

Sample chapters and the errata for this book can be found at http://deeperunderstandingfastercalc.com/how2solveIt.
php

http://deeperunderstandingfastercalc.com/how2solveIt.php
http://deeperunderstandingfastercalc.com/how2solveIt.php


Chapter 9

m-thly, UDD, W2, W3, W3*, claim acceleration

9.1 m-thly n-year term life insurance

The m-thly curtate future life time of (x)

K(m)
x = bmKx +m(Tx −Kx)c

m
= Kx + bm(Tx −Kx)c

m

The PV random variable of an n-year term m-thly insurance of 1 on (x) is:

v
min
(
K

(m)
x + 1

m
,n
)

You should be able to calculate A(12)
1
x:1

using the first principle.

Consider a 1-year term insurance of 1 on (x) that pays 1 at the end of the month of death. Its EPV is A(12)
1
x:1

. Now
essentially we have a 12-month term insurance of 1 on (x).

A
(12)
1
x:1

= A1
x:12 j

= vj

(
0px − 1

12
px

)
+ v2

j

(
1

12
px − 2

12
px

)
+ . . .+ v12

j

(
11
12
px − 12

12
px

)
j = (1 + i)1/12 − 1 is the monthly interest rate and vj = 1/(1 + j).

Similarly, an n-year term insurance of 1 on (x) that pays 1 at the end of the month of death is essentially a 12n-monthly
term insurance of 1 on (x). Its EPV is

A
(12)
1
x:n

= A1
x:12n j

= vj

(
0px − 1

12
px

)
+ v2

j

(
1

12
px − 2

12
px

)
+ . . .+ v12n

j

(
12n−1

12
px − 12n

12
px

)
Generally, A(m)

1
x:n

is the EPV of an n-year term m-thly insurance of 1 on (x).

A
(m)
1
x:n

= A1
x:mn j

= vj

(
0px − 1

m
px

)
+ v2

j

(
1
m
px − 2

m
px

)
+ . . .+ vmnj

(
mn−1
m

px − mn
m
px

)
j = (+i)1/m − 1 is the m-thly interest rate.

K
(m)
x = bmTxc

m
represents the m-thly curtate future life time of (x) and byc represents the greatest integer less than

or equal to y.
Since Tx = Kx + (Tx −Kx),

K(m)
x = bmKx +m(Tx −Kx)c

m
= Kx + bm(Tx −Kx)c

m
, 0 ≤ Tx −Kx < 1

For example, for a 3-year term 12-thly insurance of 1 on (x), if Tx = 2.65, then

K(12)
x = b12(2.65)c

12 = b31.8c
12 = 31

12 = 2 7
12

,

Or K(12)
x = 2 + b12(0.65)c

12 = 2 + b7.8c12 = 2 + 7
12

So (x) has lived 2 full years and 7 full months and the death benefit of 1 will be paid at 2 + 8
12 .
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52 CHAPTER 9. M-THLY, UDD, W2, W3, W3*, CLAIM ACCELERATION

9.2 EPV: m-thly term insurance under UDD

You can skip-read the proof. Just remember the key formula:

UDD ⇒ iA1
x:n

= i(m)A
(m)
1
x:n

= δA1
x:n

, A
(m)
x:n = A

(m)
1
x:n

+ nEx = i

i(m)A1
x:n

+ nEx

Let’s derive A(12)
1
x:1

under UDD (the uniform distribution of death between two integer ages). Under UDD, the number

of deaths per month in Year 1 is `x − `x+1

12 = dx
12

A
(12)
1
x:1

= dx/12
`x

(vj + v2
j + . . .+ v12

j ) = 1
12
dx
`x
a12 j = qx

1
12a12 j

j = (1 + i)1/12 − 1 is the monthly interest rate.

A
(1)
1
x:1

= A1
x:1

= dx
`x
vi = dx

`x(1 + i)

⇒
A

(12)
1
x:1

A1
x:1

= 1
12a12 j(1 + i) = 1

12
1− (1 + j)−12

j
(1 + i) = 1

12j
(
1− (1 + i)−1) (1 + i) = i

12j = i

i(12)

Similarly,

A
(12)

1
x+1:1

A 1
x+1:1

=
A

(12)
1
x+2:1

A 1
x+2:1

= . . . = i

i(12)

⇒
A

(12)
1
x:n

A1
x:n

=
A

(12)
1
x:1

+ 1ExA
(12)

1
x+1:1

+ 2ExA
(12)

1
x+2:1

+ . . .+ +n−1ExA
(12)

1
x+n−1:1

A1
x:1

+ 1ExA 1
x+1:1

+ 2ExA 1
x+2:1

+ . . .+ +n−1ExA 1
x+n−1:1

= i

i(12)

Generally, under UDD, A(m)
1
x:n

= i

i(m)A1
x:n

. Let m→∞: i(m) → δ andA1
x:n

= i

δ
A1
x:n

andAx = i

δ
Ax. Just remember

iA1
x:n

= i(m)A
(m)
1
x:n

= δA1
x:n

However, such a formula doesn’t apply to an m-thly n-year endowment insurance of 1 on (x), for which the correct
formula is

A
(m)
x:n = A

(m)
1
x:n

+ nEx = i

i(m)A1
x:n

+ nEx

9.3 UDD: claim acceleration approach

The average claim payment time in a 1-year m-thly term insurance is 0.5 + 0.5
m

= m+ 1
2m = 1− m− 1

2m , which is
m− 1

2m earlier than the end of Year 1. If we break down an n-year m-thly term insurance into an n consecutive

1-year m-thly term insurance contracts, we see that in each policy year the average claim time is m− 1
2m earlier

than the end of the year. Hence we need to apply the factor of (1 + i)
m−1
2m to A1

x:n
.

A
(m)
1
x:n
≈ (1 + i)

m−1
2m A1

x:n
, A1

x:n
≈ (1 + i)0.5A1

x:n

Under this approach, A(12)
1
x:1
≈ (1 + i)11/24A1

x:1
. Here’s why. Under UDD, on average death occurs at t = 0.5 in Year

1. On average it takes the insurer half a month to process a claim. From receiving a death claim to investigating the
claim to finally sending the check to the heir of the deceased takes on average half a month. Hence the death benefit 1
in A

(12)
1
x:1

is paid, on average, at 0.5 + 0.5/12 = 13/24 = 1− 11/24, which is 11/24 earlier than when the death benefit of
1 is paid in A1

x:1
.

A
(12)
1
x:1
≈ v1−11/24 dx

`x
= v−11/24 dx

`x
v = (1 + i)11/24A1

x:1

Here’s another way to derive the average payment time 13
24 in A

(12)
1
x:1

. Under UDD, (x) has an equal chance to die in
each of the 12 months. Since the death benefit 1 is paid at the end of the month of death, the claim payment time is
equally likely to be 1/12, 2/12, 3/12, . . . , and 12/12. The average claim payment times is

1/12 + 2/12 + . . .+ 12/12
12 = 1 + 2 + . . .+ 12

122 = 0.5× 12× 13
122 = 13

24 = 1− 11
24

Similarly,
A

(12)
1
x+1:1

≈ (1 + i)11/24A 1
x+1:1
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A
(12)

1
x+2:1

≈ (1 + i)11/24A 1
x+2:1

. . .

A
(12)
1
x:n

= A
(12)
1
x:1

+ 1ExA
(12)

1
x+1:1

+ 2ExA
(12)

1
x+1:1

+ . . .+ n−1ExA
(12)

1
x+n−1:1

≈ (1 + i)11/24
[
A1
x:1

+ 1ExA 1
x+1:1

+ 2ExA 1
x+1:1

+ . . .+ n−1ExA 1
x+n−1:1

]
= (1 + i)11/24A1

x:n

Under UDD, the average claim payment time in A(m)
1
x:1

is 0.5 + 0.5
m

= m+ 1
2m = 1− m− 1

2m ; A
(m)
1
x:1
≈ (1 + i)

m−1
2m A1

x:1
,

A
(m)
1
x:n
≈ (1 + i)

m−1
2m A1

x:n
. Let m → ∞: A1

x:n
≈ (1 + i)0.5A1

x:n
. For an n-year endowment insurance, only the term

insurance is subject to the claim acceleration approach: Ax:n ≈ (1 + i)0.5A1
x:n

+ nEx .

9.4 EPV: m-thly n-year annuity due under UDD

For a life annuity due that pays 1
m

at the beginning of each m-thly period for n years as long as (x) is alive, the
PV random variable is

Y = ä
(m)

min
(
K

(m)
x + 1

m
,n
)
i

= 1
m
ä

min(mK(m)+1,mn) j

j = (1 + i)1/m − 1
The EPV is

ä
(m)
x:n i = 1

m
äx:mn j = 1

m

(
1 + vj 1

m
px + v2

j 2
m
px + . . .+ vmn−1

j mn−1
m

px

)
You should be able to calculate ä(12)

x:1 i using the first principle.

Now consider a life annuity due that pays 1
12 at the beginning of each month for 1 year as long as (x) is alive. Its

EPV is
ä

(12)
x:1 = 1

12 äx:12 j = 1
12

(
1 + vj 1

12
px + v2

j 2
12
px + . . .+ v11

j 11
12
px

)
j = (1 + i)1/12 − 1 is the monthly interest rate

Its PV random variable is
Y = ä

(12)

min
(
K

(12)
x + 1

12 ,1
)
i

= 1
12 ämin(12K(12)+1,12) j

For example, if Kx = 0.56, then

K(12)
x = b0.56× 12c

12 = b6.72c
12 = 6

12 , Y = ä
(12)

7
12 i

= 1
12 ä7 j = 1

12
1− v7

j

dj

Generally, for a life annuity due that pays 1
m

at the beginning of each m-thly period for n years as long as (x) is
alive, the PV random variable is

Y = ä
(m)

min
(
K

(m)
x + 1

m
,n
)
i

= 1
m
ä

min(mK(m)+1,mn) j
, j = (1 + i)1/m − 1

ä
(m)
x:n i = 1

m
äx:mn j = 1

m

(
1 + vj 1

m
px + v2

j 2
m
px + . . .+ vmn−1

j mn−1
m

px

)
Let’s derive the formula for ä(12)

x:1 i = 1
12 äx:12 j under UDD. Under UDD,

fx(t) = qx, tpx = 1− tqx, 0 ≤ t ≤ 1

äx:12 j = 1 + vj

(
1− 1

12qx
)

+ v2
j

(
1− 2

12qx
)

+ . . .+ v11
j

(
1− 11

12qx
)

= 1 + vj + v2
j + . . .+ v11

j −
1
12qx

(
vj + 2v2

j + . . .+ 11v11
j

)
= ä12 j −

1
12qx(Ia)11 j

(Ia)n j =
än − nvnj

j
, äx:12 j = ä12 j −

1
12qx

ä11 − v
11
j

j

Generally,
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ä
(m)
x:1 i = 1

m
äx:m j = 1

m

(
äm j −

1
m
qx(Ia)m−1 j

)
= 1
m

(
äm j −

1
m
qx
äm−1 − (m− 1)vm−1

j

j

)
ä

(m)
x:n i = ä

(m)
x:1 i + 1Exä

(m)
x+1:1 i + 2Exä

(m)
x+2:1 i + . . .+ n−1Exä

(m)
x+n−1:1 i

= 1
m

(
äx:m j + 1Exäx+1:m j + 2Exäx+2:m j + . . .+ n−1Exäx+n+1:m j

)
Example 9.4.1

• qx = 0.04

• i = 0.1

• UDD holds.

Calculate A1
x:1

, A(4)
1
x:1

, A(12)
1
x:1

, A1
x:1

.

Solution 9.4.1

Under UDD, for 0 ≤ t ≤ 1, fx(t) = qx and tpx = 1 − tqx.
A

(m)
1
x:1

= qx
m
am j , j = (1 + i)1/m − 1. A1

x:1
= vqx =

0.04(1.1−1) = 0.0363636, A
(4)
1
x:1

= 0.04
4 a4 j=1.11/4−1 =

0.0377002, A(12)
1
x:1

= 0.04
12 a4 j=1.11/12−1 = 0.0380016,A1

x:1
=∫ 1

0 e
−δtf(t)dt = qx

∫ 1
0 e
−δtdt = qxa1 = qx

1− v
δ

=

0.04
(

1− 1.1−1

ln 1.1

)
= 0.0381529. A1

x:1
< A

(4)
1
x:1

< A
(12)
1
x:1

<

A1
x:1

.

Example 9.4.2

• qx = 0.04

• i = 0.1

• UDD holds.

Calculate äx:1 , ä(4)
x:1 , ä(12)

x:1 , ax:1 .

Solution 9.4.2

äx:1 = 1, ä
(4)
x:1 = 1

4

(
ä4 j −

1
4qx(Ia)3 j

)
=

1
4

(
3.860929− 0.04

4 5.676417
)

= 0.951041, j = 1.11/4 −

1 = 2.41137%; ä
(12)
x:1 = 1

12

(
ä12 j −

1
12qx(Ia)11 j

)
=

1
12

(
11.491397− 0.04

12 62.115208
)

= 0.940362, j =

1.11/12 − 1 = 0.79741%; ax:1 =
∫ 1

0 tpxe
−δt =

∫ 1
0 (1 −

0.04t)e−t ln 1.1dt = 0.9350500. Notice that äx:1 > ä
(4)
x:1 >

ä
(12)
x:1 > ax:1 .

9.5 relationship: Y and Z for m-thly

UDD or not:

ä
(m)
x:n =

1−A(m)
x:n

d(m) , V ar[Y ] = V ar[Z](
d(m)

)2 =
2A

(m)
x:n −

(
A

(m)
x:n

)2

(
d(m)

)2
Let Y represent the PV random variable of an n-year m-thly life annuity due of a total annual amount 1 on (x). Let

Z represent the PV random variable of an n-year m-thly endowment insurance of 1 on (x). Then

Y = ä
(m)

min
(
K

(m)
x + 1

m
,n
) , Z = vmin(K(m)

x + 1
m
,n)

Using the FM formula: ä(m)
t

= 1− vt

d(m) , we have Y = 1− Z
d(m) .

ä
(m)
x:n =

1−A(m)
x:n

d(m) , V ar[Y ] = V ar[Z](
d(m)

)2 =
2A

(m)
x:n −

(
A

(m)
x:n

)2

(
d(m)

)2
Example 9.5.1

• qx = 0.04

• i = 0.1

• UDD holds.

Calculate ä(12)
x:1 .

Solution 9.5.1

A
(12)
x:2 = A

(12)
1
x:2

+ 1Ex = i

i(12) qxv + pxv =
0.1

12(1.11/12 − 1)
0.04(1.1−1) + 0.96(1.1−1) = 0.0380016 +

0.8727273 = 0.910729, ä(12)
x:1 = 1− 0.910729

12(1− 1.1−1/12)
= 0.94036
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Example 9.5.2

• qx = 0.04

• qx+1 = 0.06

• qx+2 = 0.08

• i = 0.1

• UDD holds.

• Y is the PV random variable of a 3-year life annuity
due on (x) payable 1

12 monthly

• Z is the PV random variable of a 3-year endowment
insurance of 1 on (x) with the death benefit 1 payable
at the end of the month of death

Calculate V ar[Y ] and V ar[Z].

Solution 9.5.2

Think monthly! Make 2 new PV random variables: Y36 for
a 36-month life annuity due of 1 on (x) and Z36 for a 36-
month endowment insurance of 1 on (x). Now E[Y36] =
äx:36 j , E[Z36] = Ax:36 j , j = 1.11/12 − 1, Y36 = 12Y ,
Z36 = Y .
E[Z36] = A1

x:12 j
+ 1|A1

x:12 j
+ 2|A1

x:12 j
+ (1 + i)−3

3px

=
a12 j

12 [qx + (1 + i)−1pxqx+1 + (1 + i)−2pxpx+1qx+2] =
1−1.1−1

12(1.11/12−1)

(
0.04+1.1−10.96(0.06)+1.1−20.96(0.94)0.08

)
+

1.1−30.96(0.94)0.92 = 0.1444313 + 0.62374756 =
0.76817886

To calculate E[(Z36)2], we just replace j with j∗ =
(1 + j)2 − 1 and i with i∗ = (1 + i)2 − 1.
E[(Z36)2] =

a12 j∗
12 [qx + (1 + i∗)−1pxqx+1 +

(1 + i∗)−2pxpx+1qx+2] = 1−1.1−2

12(1.12×1/12−1)

(
0.04 +

1.1−20.96(0.06)+1.1−40.96(0.94)0.08
)
+1.1−60.96(0.94)0.92

= 0.12366601 + 0.46863077 = 0.59229678
V ar[Z36 = 0.59229678 − 0.768178862 = 0.0021980,

monthly d = 1 − 1.1−1/12, V ar[Y36] = 0.0021980
d2 =

74.869491, V ar[Y36] = 74.869491/122 = 0.243893. By the
way, E[Y36] = 1− 0.76817886

d
= 29.303431, and E[Y ] =

29.303431/12 = 2.4419530

9.6 relationship: EPV of m-thly annuity due, immediate

a
(m)
x:n = ä

(m)
x:n −

1
m

+ 1
m
nEx = ä

(m)
x:n −

1
m

(1− nEx)

Example 9.6.1

• Mortality: Illustrative Life Table.
• i = 0.06
• ä(12)

45:10 = 7.42945

Calculate a(12)
45:10 .

Solution 9.6.1

a
(12)
45:10 = ä

(12)
45:10 −

1
12(1 − 10E45) = 7.42945 − 1

12(1 −
0.526515) = 7.39000

9.7 Euler-Maclaurin formula

Euler-Maclaurin formula is an improved version of the trapezoidal rule. The trapezoidal rule approximation is:∫ b

a

f(x)ds ≈ h

2 [f(a) + f(a+ h)] + h

2 [f(a+ h) + f(a+ 2h)] + . . .+ h

2 [f(a+ (n− 1)h) + f(b)]

= h
[
f(a) + f(a+ h) + . . .+ f(b)

]
− h

2

[
f(a) + f(b)

]
= h
[
f(a) + f(a+ h) + . . .+ f(b− h)

]
− h

2

[
f(a)− f(b)

]
Euler-Maclaurin formula is:∫ b

a

f(x)dx ≈ h
[
f(a) + f(a+ h) + . . .+ f(b)

]
− h

2

[
f(a) + f(b)

]
+ h2

12

[
f1(a)− f1(b)

]
= h
[
f(a) + f(a+ h) + . . .+ f(b− h)

]
− h

2

[
f(a)− f(b)

]
+ h2

12

[
f1(a)− f1(b)

]
The textbook uses the Euler-Maclaurin formula to derive the Woolhouse’s formula so you need to know a little bit

of the Euler-Maclaurin formula. I’ll give you a cliff notes version of the Euler-Maclaurin formula. This formula was

independently discovered by both Euler and Maclaurin. It was the very formula by which Euler guessed
∞∑
n=0

1
n2 = π2

6 ,

which he later proved.
Suppose we need to estimate

∫ b
a
f(x)dx, the area under the curve f(x) bounded by x = a and x = b. Before the

Euler-Maclaurin formula, we would use the trapezoidal rule to approximate this area.
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a ba+ h a+ 2h b− h

f(a) f(a+ h)

f(b)

f(b− h)

f(a+ 2h) Divide the interval [a, b] into m intervals each of length h = b−a
m

.∫ b
a
f(x)dx is roughly the sum of the areas of m trapezoids (R is the error

term): ∫ b

a

f(x)ds =

h

2 [f(a)+f(a+h)]+h

2 [f(a+h)+f(a+2h)]+. . .+h

2 [f(a+(n−1)h)+f(b)]+R

= h[f(a) + f(a+ h) + . . .+ f(b)]− h

2 [f(a) + f(b)] +R

The Euler-Maclaurin formula specifies the error term:

R = b2
2! [f1(b)− f1(a)]h2 + b3

3! [f2(b)− f2(a)]h3 + . . .+ bk+1

(k + 1)! [f
k(b)− fk(a)]hk+1 +R2

bi is a Bernoulli’s number (to be explained shortly), f i is i-th derivative of f(x), k is any positive integer as long as
f(x) has a continuous k-th derivative, and R2 is an error term.

The Bernoulli’s number bk for k = 0, 1, 2, . . . is defined by the equation

x

ex − 1 = b0 + b1x+ b2
2! x

2 + b3
3! x

3 + . . .+ bk
k! x

k + . . . =
∞∑
k=0

bk
k! x

k

bk = dn

dxn

(
x

ex − 1

)∣∣∣∣
x=0

b0 = lim
x→0

x

ex − 1 = lim
x→0

1
ex

= 1, b1 = lim
x→0

d

dx

x

ex − 1 = lim
x→0

−1 + ex − xex

(ex − 1)2 = lim
x→0

−x
2(ex − 1) = lim

x→0

−1
2ex = −1

2

Here’s another way to find bk. Consider the reverse function ex − 1
x

. Use Taylor expansion

ex = 1 + x+ x2

2! + x3

3! + x4

4! + . . .

ex − 1
x

= 1 + u, u = x

2 + x2

6 + x3

24 + x4

120 + . . .

Now the original function is
x

ex − 1 = 1
1 + u

= 1 + (−u) + (−u)2 + (−u)3 + . . .

To find b0 to b4, we’ll omit the x5 terms and above.

1
1 + u

= 1−
(
x

2 + x2

6 + x3

24 + x4

120

)
+
(
x

2 + x2

6 + x3

24

)2

−
(
x

2 + x2

6

)2

+
(
x

2

)4
+ o(x5)

= 1− 1
2x+ 1

12x
2 − 1

720x
4 + . . . =

∞∑
k=0

bk
k! x

k

b0
0! = 1, b1

1! = −1
2 ,

b2
2! = 1

12 ,
b3
3! = 0, b4

4! = − 1
720

Similarly, we can find that
b5
5! = 0, b6

6! = 1
30240

By the way, the odd Bernoulli’s numbers are all zero except b1 = − 1
2 . That is, b2k−1 = 0 for k ≥ 2. To summarize,

under the Euler-Maclaurin formula:∫ b

a

f(x)dx = h[f(a) + f(a+ h) + . . .+ f(b)]− h

2 [f(a) + f(b)] +R

R = h2

12 [f1(a)− f1(b)]− h4

720 [f3(a)− f3(b)] + h6

30240 [fa(b)− f5(b)] + . . .+R2 =
k∑
i=2

bi
i! h

i[f i−1(a)− f i−1(b)] +R2

.
Ignoring the third and higher derivatives:∫ b

a

f(x)dx ≈ h
[
f(a) + f(a+ h) + . . .+ f(b)

]
− h

2

[
f(a) + f(b)

]
+ h2

12

[
f1(a)− f1(b)

]
≈ h
[
f(a) + f(a+ h) + . . .+ f(b− h)

]
− h

2

[
f(a)− f(b)

]
+ h2

12

[
f1(a)− f1(b)

]
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9.8 Woolhouse’s formula

Because the 3-term Woolhouse approximation is too time-consuming, most likely, all you need to do in the exam
is to use the following 2-term Woolhouse’s formula:

ä
(m)
x:n ≈ äx:n −

m− 1
2m (1− nEx)

The 2-term Woolhouse’s formula is exactly the trapezoidal rule.

If you are short on time, just memorize the 2-term Woolhouse’s formula and move on. Don’t bother understanding
the 3-term Woolhouse formula or the Euler-Maclaurin formula.

Let’s apply the Euler-Maclaurin formula to the integral ax:n =
∫ n

0 g(t)dt =
∫ n

0 tExdt.

g(t) = tEx = e−δttpx, g(0) = 1, g(n) = nEx

g1(t) = −tpxδe−δt − e−δttpxµx+t = −tEx(δ + µx+t)

g1(0) = −(δ + µx), g1(n) = −nEx(δ + µx+n)

ax:n ≈ h
[
g(0) + g(h) + g(2h) + . . .+ g(n− h)

]
− h

2 (1− nEx)− h2

12

[
(δ + µx)− nEx(δ + µx+n)

]
Set h = 1

m
where m is a positive integer.

h
[
g(0) + g(h) + g(2h) + . . .+ g(n− h)

]
= 1
m

[
1 + 1

m
Ex + 2

m
Ex + . . .+ nm−1

m
Ex

]
= ä

(m)
x:n

ax:n ≈ ä(m)
x:n −

1
2m (1− nEx)− 1

12m2

[
(δ + µx)− nEx(δ + µx+n)

]
The above formula should work for any positive integer m. Set m = 1 and we get a 3-term Woolhouse approximation:

ax:n ≈ äx:n −
1
2(1− nEx)− 1

12

[
(δ + µx)− nEx(δ + µx+n)

]
≈ ä(m)

x:n −
1

2m (1− nEx)− 1
12m2

[
(δ + µx)− nEx(δ + µx+n)

]
3-term Woolhouse approximation:

ä
(m)
x:n = äx:n −

(
1
2 −

1
2m

)
(1− nEx)−

(
1
12 −

1
12m2

)[
(δ + µx)− nEx(δ + µx+n)

]
Set n =∞. Then g(∞) = g1(∞) = 0:

ax ≈ äx −
1
2 −

1
12(δ + µx) ≈ ä(m)

x − 1
2m −

1
12m2 (δ + µx)

ä(m)
x = äx −

(
1
2 −

1
2m

)
−
(

1
12 −

1
12m2

)
(δ + µx)

2-term Woolhouse approximation (e.g. trapezoidal rule):

ax:n ≈ äx:n −
1− nEx

2 ≈ ä(m)
x:n −

1− nEx
2m , ä

(m)
x:n ≈ äx:n −

m− 1
2m (1− nEx)

ax ≈ äx −
1
2 ≈ ä

(m)
x − 1

2m

Example 9.8.1

(Exam MLC: Spring 2015 Q7) You are given:

(i) A35 = 0.188

(ii) A65 = 0.498

(iii) 30p35 = 0.883

(iv) i = 0.04

Calculate 1000ä(2)
35:30 using the two-term Woolhouse ap-

proximation.

Solution 9.8.1

a35:30 ≈ ä35:30 −
1− 30E35

2 ≈ ä(2)
35:30 −

1− 30E35

2× 30 ,

ä35:30 = ä35 − ä6530E35 = 1− 0.188
0.04/1.04 −

1− 0.498
0.04/1.04(0.883)1.04−30 = 17.558653

17.558653 − 1− (0.883)1.04−30

2 ≈ ä
(30)
35:30 −

1− (0.883)1.04−30

2× 30 , ä(2)
35:30 ≈ 17.206905 , 1000(17.206905) =

17, 207
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9.9 EPV of m-thly whole life annuity due: alpha and beta under UDD

Instead of the 2-term Woolhouse’s formula,

ä
(m)
x:n ≈ äx:n −

m− 1
2m (1− nEx)

now
ä

(m)
x:n ≈ α(m)äx:n − β(m)m− 1

2m (1− nEx), α(m) = id

i(m)d(m) , β(m) = i− i(m)

i(m)d(m)

UDD or not:

ä(m)
x = 1−A(m)

x

d(m) , A(m)
x = 1− dä(m)

x

UDD:
A(m)
x = i

i(m)Ax

ä(m)
x =

1− i

i(m) (1− däx)

d(m) = 1
i(m)d(m)

[
idäx − (i− i(m))

]
= α(m)äx − β(m)

α(m) = id

i(m)d(m) , β(m) = i− i(m)

i(m)d(m)

If m→∞, then i(m) = d(m) = δ and ax = 1
δ2

[
idäx − (i− δ)

]
.

ä
(m)
x:n = ä(m)

x − nExä
(m)
x+n =

[
α(m)äx − β(m)

]
− nEx

[
α(m)äx+n − β(m)

]
= α(m)äx:n − β(m)(1− nEx)

We can verify that α(m) ≈ 1 and β(m) ≈ 1
2 −

1
2m . Use Taylor expansion:

i = eδ − 1 ≈ δ + 1
2δ

2, d = 1− v = 1− e−δ ≈ δ − 1
2δ

2

i(m) = m((1 + i)1/m − 1) = m(eδ/m − 1) ≈ m( δ
m

+ δ

2m2 ) = δ + δ

2m

d(m) = m(1− (1 + i)−1/m) = m(1− e−δ/m) ≈ m( δ
m
− δ

2m2 ) = δ − δ

2m

id ≈ δ2, i(m)d(m) ≈ δ2, i− i(m) ≈ δ2
(

1
2 −

1
2m

)
⇒ α(m) = id

i(m)d(m) ≈ 1, β(m) = i− i(m)

i(m)d(m) ≈
1
2 −

1
2m

Simplified approximation:

ä
(m)
x:n ≈ äx:n −

(
1
2 −

1
2m

)
(1− nEx)

Let m→∞, then
i(m) = d(m) = δ, α(m) = id

δ2 , β(m) = i− δ
δ2

Under UDD,
ax:n = id

δ2 äx:n −
i− δ
δ2 (1− nEx)

ax = id

δ2 äx −
i− δ
δ2



9.9. EPV OF M-THLY WHOLE LIFE ANNUITY DUE: ALPHA AND BETA UNDER UDD 59

Example 9.9.1

For S(x) = 1− x

100 where 0 ≤ x ≤ 100 and i = 0.10, calculate ä(12)
40:3 under the following methodologies:

(i) Exact

(ii) UDD (uniform distribution of deaths between integral ages)

(iii) W2: 2-term Woolhouse approximation

(iv) W3: 3-term Woolhouse approximation with exact force of mortality

(v) W3∗: 3-term Woolhouse approximation with approximate force of mortality

Solution 9.9.1

Notice the morality is De Moivre’s law. Arbitrarily set `0 = 100.

`x = `0S(x) = 100− x, tp40 = `40+t

`40
= 60− t

60 , f40(t) = − d

dt
tp40 = 1

60

µ40+t = f40(t)
tp40

= 1
60− t , ä40:3 = 1 + 59

60
(
1.1−1)+ 58

60
(
1.1−2) = 2.692837

EXACT. Generally, it’s hard to manually calculate ä(m)
x:n . However,it’s easy to calculate under the De Moivre’s law.

Let j = 1.11/12 − 1 represent the monthly interest rate. vj = 1/(1 + j).

12ä(12)
40:3 = 60

60 + 60− 1/12
60 vj + 60− 2/12

60 v2
j + . . .+

60− 3×12−1
12

60 v35
j = ä36 j −

1
60× 12(Ia)35 j

Remember that tp40 = 60− t
60 and that there are 36 monthly payments.

ä36 j =
1− v36

j

dj
= 1− 1.1−3

1− 1.1−1/12 = 31.435144

(Ia)35 j =
ä35 − 35v35

j

j
=

1− 1.1−35/12

1− 1.1−1/12 − 35× 1.1−35/12

1.11/12 − 1
= 523.20769

12ä(12)
40:3 = 31.435144− 523.20769

60× 12 = 30.708467, ä
(12)
40:3 = 30.708467

12 = 2.5590389

If `x is proportional to ω − x (De Moivre’s law), then for n = 1, , . . . , ω − x and j = (1 + i)1/m − 1,

ä
(m)
x:n = 1

m

(
ω − x
ω − x +

ω − x− 1
m

ω − x vj +
ω − x− 2

m

ω − x v2
j + . . .+

ω − x− nm−1
m

ω − x vnm−1
j

)

ä
(m)
x:n = 1

m

(
ämn j −

1
m(ω − x) (Ia)mn−1 j

)
UDD.

i = 0.1, d = 0.1/1.1, i(12) = 12(1.11/12 − 1) = 0.095690, d(12) = 12(1− 1.1−1/12) = 0.094933

α(12) = id

i(12)d(12) = 1.0007520, β(12) = i− i(12)

i(12)d(12) = 0.4744912

ä
(12)
40:3 = α(12)ä40:3 − β(12)(1− 3E40) = 1.0007520(2.692837)− 0.4744912

(
1− 57

60(1.1−3)
)

= 2.559039

W2 : ä
(12)
40:3 ≈ ä40:3 −

1
2

(
1− 1

12

)
(1− 3E40)

= 2.692837− 1
2

(
1− 1

12

)(
1− 57

60(1.1−3)
)

= 2.561639

W3 = W2− 1
12

(
1− 1

122

)(
δ + µ40 − 3E40(δ + µ43)

)
= W2− 1

12

(
1− 1

122

)(
ln 1.1 + 1

60 −
57
601.1−3(ln 1.1 + 1

57)
)

= W2− 0.0026008 = 2.561639− 0.0026008 = 2.55904

To calculate W3∗, repeat the W3 calculation but use the approximate µ40 and µ43. The approximation is

µx ≈ −0.5(ln px−1 + ln px) = −0.5 ln(px−1px) = −0.5(ln `x+1

`x−1
) = −0.5 ln 2px−1

µ40 ≈ −0.5 ln `41

`39
= −0.5 ln 100− 41

100− 39 = 0.016668, µ43 ≈ −0.5 ln 100− 44
100− 42 = 0.017546
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W3∗ = W2− 1
12

(
1− 1

122

)(
δ + µ40 − 3E40(δ + µ43)

)
= W2− 1

12

(
1− 1

122

)(
ln 1.1 + 0.016668− 57

601.1−3(ln 1.1 + 0.017546)
)

= 2.561639− 0.0026008 = 2.561639− 0.0026008 = 2.55904

Example 9.9.2

For S(x) = 1− x

100 where 0 ≤ x ≤ 100 and i = 0.10, calculate ä(12)
40 using Exact, UDD, W2, W3, and W3∗.

Solution 9.9.2

EXACT METHOD 1.
12ä(12)

40 = 12ä(12)
40:60 = ä12×60 j −

1
60× 12(Ia)12×60−1 j

ä12×60 j = 1− 1.1−60

1− 1.1−1/12 = 125.99022

(Ia)12×60−1 j =

1− 1.1−(12×60−1)/12

1− 1.1−1/12 − (12× 60− 1)× 1.1−(12×60−1)/12

1.11/12 − 1
= 15500.942

12ä(12)
40 = 125.99022− 15500.942

60× 12 = 104.46113, ä
(12)
40 = 104.46113

12 = 8.7050942

EXACT METHOD 2. We’ll use the formula ä(m)
x = 1−A(m)

x

d(m) . First, we’ll develop a formula A(m)
x = 1

ω − xa
(m)
ω−x . De

Moivre’s law satisfies UDD.
i(m)A(m)

x = δAx

Ax =
∫ ω−x

0
e−δtfx(t)dt =

∫ ω−x

0
e−δt

1
ω − xdt = 1

ω − x
1− v−(ω−x)

δ

A(m)
x = 1

ω − x
1− v−(ω−x)

i(m) = 1
ω − xa

(m)
ω−x

A
(12)
40 = 1

60a
(12)
60 = 1

60
1− 1.1−60

12(1.11/12 − 1)
= 0.17360208

ä
(12)
40 = 1−A(12)

x

d(12) = 1− 0.17360208
12(1− 1.1−1/12)

= 8.7050943

UDD.
A40 = 1

60a60 = 1
60

1− 1.1−60

0.1 = 0.16611929

ä40 = 1−A40

d
= 1− 0.16611929

0.1/1.1 = 9.1726878

ä
(12)
40 = α(12)ä40 − β(12) = 1.0007520(9.1726878)− 0.4744912 = 8.7050945

W2 : ä
(12)
40 ≈ ä40 −

1
2

(
1− 1

12

)
= 9.1726878− 1

2

(
1− 1

12

)
= 8.7143545

W3 = W2− 1
12

(
1− 1

122

)
(δ + µ40) = 8.7143545− 1

12

(
1− 1

122

)(
ln 1.1 + 1

60

)
= 8.7050879

W3∗: repeat the W3 calculation but use

µ40 ≈ −0.5 ln `41

`39
= −0.5 ln 100− 41

100− 39 = 0.016668

W3∗ = W2− 1
12

(
1− 1

122

)
(δ + µ40) = 8.7143545− 1

12

(
1− 1

122

)
(ln 1.1 + 0.016668) = 8.7050878
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Example 9.9.3

For S(x) = 1− x

100 where 0 ≤ x ≤ 100 and i = 0.10, calculate a40 using Exact, UDD, W2, W3, and W3∗.

Solution 9.9.3

EXACT a40 = 1−A40

δ
=

1− 1
60a60

δ
=

1− 1
60

1− 1.1−60

ln 1.1
ln 1.1 = 8.6633628

ä40 = 1−A40

d
=

1− 1
60a60

d
=

1− 1
60

1− 1.1−60

0.1
0.1/1.1 = 9.1726878

UDD : a40 = α(∞)ä40 − β(∞) = 1.000757232× 9.1726878− 0.516270862 = 8.6633628

W2 : a40 ≈ ä40 − 0.5 = 9.1726878− 0.5 = 8.6726878

W3 = W2− 1
12(δ + µ40) = 8.6726878− 1

12

(
ln 1.1 + 1

60

)
= 8.6633564

W3∗: repeat the W3 calculation but use

µ40 ≈ −0.5 ln `41

`39
= −0.5 ln 100− 41

100− 39 = 0.016668

W3∗ = 8.6726878− 1
12 (ln 1.1 + 0.016668) = 8.6633563

9.10 Check your knowledge

Homework 9.10.1

Use the Illustrative Life Table and i = 8%. Calculate ä(4)
60:3 using UDD, W2, and W3∗.

Homework Solution 9.10.1

Difficulty

ä60:3 = `60 + `61v + `62v
2

`60
= 2.746033

i = 0.08, d = 0.08/1.08

i(4) = 4(1.081/4 − 1) = 0.077706, d(4) = 4(1− 1.08−1/4) = 0.076225

UDD : α(4) = id

i(4)d(4) = 1.000463, β(4) = i− i(4)

i(4)d(4) = 0.387260

ä
(4)
60:3 = α(4)ä60:3 − β(4)(1− 3E60) = 1.000463(2.746033)− 0.387260(1− 0.758524) = 2.65379

W2 : ä
(4)
60:3 ≈ ä60:3 −

1
2

(
1− 1

4

)
(1− 3E60) = 2.746033− 1

2

(
1− 1

4

)
(1− 0.758524) = 2.65548

W3∗ : µ60 ≈ −0.5 ln `61

`59
= 0.013277201, µ63 ≈ −0.5 ln `64

`62
= 0.017279969

W3∗ = W2− 1
12

(
1− 1

42

)(
δ + µ60 − 3E60(δ + µ63)

)
= 2.65548− 1

12

(
1− 1

42

)(
ln 1.08 + 0.013277201− 0.758524(ln 1.08 + 0.017279969)

)
= 2.65401

Homework 9.10.2

(i) Mortality: Standard Ultimate Survival Table (in Ap-
pendix D of AMLRC textbook)

(ii) i = 0.05

(iii) ä50:20 = 12.842791

Calculate ä(12)
50:20 using UDD, W2, W3, and W3∗.

Homework Solution 9.10.2

Difficulty
i = 0.05, i(12) = 0.048889, d(12) = 0.048691, α(12) =
1.000197, β(12) = 0.466508,

UDD W2 W3 W3∗
ä

(12)
50:20 12.54127 12.54407 12.54162 12.54162
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µx = A + Bcx, where A = 0.00022, B = 0.0000027,
c = 1.124, µ50 = 0.0011526, µ70 = 0.0098806

For W3∗, the estimated force of mortalities are µ50 ≈

− ln 2p49 = − ln `51

`49
= 0.0011547, µ70 ≈ −0.5 ln 2p69 =

−0.5 ln `71

`69
= 0.0099026

Homework 9.10.3

(i) Mortality: Standard Select Ultimate Survival Table
(in Appendix D of AMLRC textbook)

(ii) i = 0.05

(iii) ä50:20 = 12.845595

Calculate ä(12)
50:20 using UDD, W2, and W .

Homework Solution 9.10.3

Difficulty
i = 0.05, i(12) = 0.048889, d(12) = 0.048691, α(12) =
1.000197, β(12) = 0.466508,

UDD W2 W3 W3∗
ä

(12)
50:20 12.54411 12.54691 12.54449 12.54448

µ[x]+s = 0.92−sµx+s for s = 0, 1, 2, µx+s = A +
Bcx+s, where A = 0.00022, B = 0.0000027, c = 1.124,
µ[50] = 0.92 × 0.0011526 = 0.0009336, µ70 = 0.0098806.
For W3∗, the estimated force of mortalities are µ[50] ≈

− ln p[50] = − ln
`[50]+1

`[50]
= 0.0010338, µ70 ≈ −0.5 ln 2p69 =

−0.5 ln `71

`69
= 0.0099026

Homework 9.10.4

(i) Mortality: Illustrative Life Table

(ii) i = 0.06

Calculate 20|ä
(12)
45 using UDD, W2, and W3∗.

Homework Solution 9.10.4

Difficulty
20|ä

(12)
45 = 20E45ä

(12)
65 , 20E45 = 0.256341

UDD: ä(12)
65 = α(12)ä65 − β(12) = 1.000281× 9.89693−

0.468120) = 9.43159, 0.256341(9.43159) = 2.417703

W2: ä
(12)
65 = ä65 −

1
2

(
1− 1

12

)
= 9.43859,

0.256341(9.43859) = 2.419498

W3∗: 9.43859 − 1
12

(
1− 1

122

)
(ln 1.06 + µ65) =

9.432065, where µ65 ≈ −0.5 ln `66

64 = −0.5 ln 7373338
7683979 =

0.0206335, 0.256341(9.432065) = 2.4178250

Homework 9.10.5

(i) Mortality: Illustrative Life Table

(ii) i = 0.06

Calculate a(4)
30:20 using UDD, W2, and W3∗.

Homework Solution 9.10.5

Difficulty

a
(4)
30:20 = ä

(4)
30:20 −

1
4(1 − 20E30) = ä

(4)
30:20 − 0.17657

ä30:20 = ä30 − 20E30ä30 = 11.95913, 20E30 = 0.29374

UDD W2 W3∗
ä

(4)
30:20 11.69093 11.69428 11.69108
a

(4)
30:20 11.51436 11.51771 11.51451

Homework 9.10.6

For a semi-continuous 20-year decreasing insurance on (40), you are given:

(i) Death benefit: paid at the moment of death.

(ii) Death benefit amount: 200,000 for each of the first 10 years and 100,000 for each of the next 10 years.

(iii) Annual premium: P for each of the first 10 years and 0.5P for each of the next 10 years.

(iv) EPV of continuous death benefits is calculated using the claim acceleration approach

Premium basis:

• Mortality: Illustrative Life Table

• i = 6%.

• Expense: zero

• Selective actuarial values: A 1
40:20

= 0.060132, A 1
40:10

= 0.027667, ä40:20 = 11.76126, ä40:10 = 7.69664

Calculate P .

Homework Solution 9.10.6
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Difficulty
Under the claim acceleration method, the continuous death claim payment throughout the year is modeled by one claim
payment at mid year.

0.5P ä40:20 + 0.5P ä40:10 = 100, 000A1
40:20

+ 100, 000A1
40:10

P = 100000
A 1

40:20
+A 1

40:10

0.5(ä40:20 + ä40:10 ) = 100000× 1.060.5 ×
A 1

40:20
+A 1

40:10

0.5(ä40:20 + ä40:10 )

= 100000(1.060.5)× 0.060132 + 0.027667
0.5(11.76126 + 7.69664) = 929.13

Homework 9.10.7

An insurer issues an annuity to a life 60. The annuity is payable monthly in advance and is guaranteed for the first 10
years and for the whole life thereafter. If the annual payment is 2,000, calculate the EPV of this annuity. Basis:

• Mortality: Illustrative Life Table

• i = 6%

Homework Solution 9.10.7

Difficulty

EPV = 2000
(
ä

(12)
10 + 10E60ä

(12)
70

)
= 2000(7.597117 + 0.45120× 8.1109) = 22514

ä
(12)
10 = 1− v10

d(12) = 1− 1.06−10

0.058128 = 7.597117, ä
(12)
70 = ä70 −

11
24 = 8.5693− 11

24 = 8.1109

Homework 9.10.8

Explain ä
(12)
50:50:20 in English and calculate its value using the Illustrative Life Table and 6% interest.

Homework Solution 9.10.8

Difficulty
ä

(12)
50:50 is the expected present value of an annuity on two lives (50) and (50). The payment is 1 per year for a maximum

of 20 years payable monthly in advance while both lives are alive.

ä
(12)
50:50:20 = ä

(12)
50:50 − 20E50:50 ä

(12)
70:70

ä
(12)
50:50 = ä50:50 −

11
24 = 11.6513− 11

24 = 11.1930, ä
(12)
70:70 = ä70:70 −

11
24 = 6.5247− 11

24 = 6.0664

20E50:50 = v20
20p50 20p50 = 20E50 20p50 = 0.23047× 0.73916

ä
(12)
50:50:20 = 11.1930− 0.23047× 0.73916× 6.0664 = 10.1596

Homework 9.10.9

For a reversionary annuity on a man age 60 and his wife age 60, you are given:

(i) Payments: 10,000 per year payable monthly for life to the wife after the death of the husband. The first payment
occurs one month after the death of the husband. Assume that the husband dies at the end of a month.

(ii) Premiums: level monthly premiums payable immediately after issue while both the husband and the wife are alive.

(iii) Expenses: 4% of each premium payment and 2% of each annuity payment

Calculate the monthly premium under the equivalence principle using the Illustrative Life Table and 6% interest.

Homework Solution 9.10.9

Difficulty

0.96× 12P ä(12)
60:60 = 1.02× 10, 000a(12)

60|60 = 1.02× 10, 000(a(12)
60 − a

(12)
60:60)

ä
(12)
60:60 = ä60:60 −

11
24 = 9.1911− 11

24 = 8.7328

a
(12)
60 − a

(12)
60:60 = ä

(12)
60 − ä

(12)
60:60 = ä60 −

11
24 −

(
ä60:60 −

11
24

)
= ä60 − ä60:60 = 11.1454− 9.1911 = 1.9543

0.96× 12P × 8.7328 = 1.02× 10000(1.9543)

P = 198.15

Homework 9.10.10
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For a special fully discrete whole life insurance of 100,000 on (50). You are given:

(i) Mortality: Illustrative Life Table

(ii) i = 6%

(iii) Premium: level monthly

Calculate the net level monthly premium assuming

• level monthly payable for at most 10 years

• level monthly payable for life

Homework Solution 9.10.10

Difficulty

ä
(12)
50:10 = ä50:10 −

11
24 (1− 10E50) = 7.57371− 11

24(1− 0.510806) = 7.349496

12P ä(12)
50:10 = 100000A50, 12× 7.349496P = 100000× 0.24905, P = 282.39

ä
(12)
50 = ä50 −

11
24 = 13.26683− 11

24 = 12.80850

12× 12.80850P = 100000× 0.24905, P = 162.03

Homework 9.10.11

For a special fully discrete whole life insurance on (50), you are given:

• Death benefit: 100,000 at the end of the month of death

• Premium: level monthly premium

• Mortality: Illustrative Life Table

• i = 6%

• Initial expense: 10% of the total of the first year premiums incurred at issue

• Commission: 4% of each monthly premium including premiums in Year 1

(a) Calculate the monthly premium using the equivalence principle

(b) Write down the loss at issue random variable for this policy

(c) The insurer issues 10,000 identical policies to independent lives age 50. Calculate the monthly premium such that
the probability of a positive total loss is 1%.

Homework Solution 9.10.11

Difficulty

(a) 12P ä(12)
50 = 100, 000A(12)

50 + 0.1× 12P + 0.04× 12P ä(12)
50 , P = 1

12 ×
100, 000A(12)

50

0.96ä(12)
50 − 0.1

We assume UDD.

100, 000A12
50 = 100, 000× i

i(12)A50 = 100000× 0.06
12× (1.061/12 − 1)

× 0.24905 = 25582.682

ä
(12)
50 = ä50 −

11
24 = 13.26683− 11

24 = 12.808495

P = 1
12 ×

25582.682
0.96× 12.808495− 0.1 = 174.80

(b), (c) The total loss at issue is

S = L1 + L2 + . . .+ LN , N = 10, 000, L′is are iid (independent identically distributed)

S is approximately normal.
E(S) = NE(L), V ar(S) = NV ar(L)

L = 100, 000vK
(12)
50 + 1

12 + 0.1× 12P − 0.96× 12P ä(12)

K
(12)
50 + 1

12

= 100, 000vK
(12)
50 + 1

12 + 0.1× 12P − 0.96× 12P × 1− vK
(12)
50 + 1

12

d(12)

=
(

100, 000 + 0.96× 12
d(12) P

)
vK

(12)
50 + 1

12 + 12P
(

0.1− 0.96
d(12)

)
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=
(

100000 + 0.96× 12
0.058128 P

)
vK

(12)
50 + 1

12 + 12P
(

0.1− 0.96
0.058128

)
= (100000 + 198.18332P )vK

(12)
50 + 1

12 − 196.98332P

d(12) = 12
(

1− 1.06−1/12
)

= 5.81277%

E(L) = (100000 + 198.18332P )A(12)
60 − 196.98332P

= (100000 + 198.18332P )0.255824− 196.98332P = 25582.4− 146.28327P

V ar(L) = (100000 + 198.18332P )2
(

2A
(12)
50 −

(
A

(12)
50

)2
)

2A
(12)
50 = A

(12)
50|j=1.062−1 = j

j(12)A50|j = 1.062 − 1
12× (1.062/12 − 1)

× 0.094756 = 0.1236
0.11710553 × 0.094756 = 0.100011

2A
(12)
50 −

(
A

(12)
50

)2
= 0.100011− 0.2558242 = 0.034565

E(S) = 10000(25582.4− 146.28327P ), V ar(S) = 10000(100000 + 198.18332P )2 × 0.034565

σS = 100(100000 + 198.18332P )
√

0.034565

Pr (S < 0) = Φ
(

0− 10000(25582.4− 146.28327P )
100(100000 + 198.18332P )

√
0.034565

)
= 0.99

0− 10000(25582.4− 146.28327P )
100(100000 + 198.18332P )

√
0.034565

= Φ−1(0.99) = 2.3263

P = 178.88

Homework 9.10.12

For a special fully discrete 10-year endowment insurance on (60), you are given:

• Death benefit: 100,000 at the end of the month of death

• Premium: level monthly premium

• Mortality: Illustrative Life Table

• i = 6%

• Commission: 5% of each monthly premium including premiums in Year 1

• Selective actuarial value: 2A
(12)
50:10 = 0.357714

(a) Calculate the monthly premium using the equivalence principle

(b) The insurer issues 10,000 identical policies to independent lives age 60. Calculate the monthly premium such that
the probability of a positive total loss is 10%.

Homework Solution 9.10.12

Difficulty

12(0.95)P ä(12)
60:10 = 100, 000A(12)

60:10

We assume UDD.
A

(12)
60:10 = A1

60:10

i

i(12) + 10E60

A1
60:10

= A60 − 10E60A70 = 0.36913− 0.451196× 0.514948 = 0.13679

A
(12)
60:10 = 0.06

12
(
1.061/12 − 1

)0.13679 + 0.451196 = 0.591707

ä
(12)
60:10 = ä60:10 −

11
24 (1− 10E60)

ä60:10 = ä60 − ä7010E60 = 11.14535− 8.56925× 0.451196 = 7.27894

ä
(12)
60:10 = 7.27894− 11

24(1− 0.451196) = 7.027405



66 CHAPTER 9. M-THLY, UDD, W2, W3, W3*, CLAIM ACCELERATION

12(0.95)P ä(12)
60:10 =

100, 000A(12)
60:10

12(0.95)ä(12)
60:10

= 100000× 0.591707
12(0.95)7.027405 = 738.60

The total loss at issue is

S = L1 + L2 + . . .+ LN , N = 10, 000, L′is are iid (independent identically distributed)

S is approximately normal.
E(S) = NE(L), V ar(S) = NV ar(L)

L = 100, 000vK
(12)
60 + 1

12 − 0.95× 12P ä(12)

K
(12)
60 + 1

12

= 100, 000vK
(12)
60 + 1

12 − 0.95× 12P × 1− vK
(12)
60 + 1

12

d(12)

=
(

100, 000 + 0.95× 12
d(12) P

)
vK

(12)
60 + 1

12 − P 12× 0.95
d(12)

= (100000 + 196.11891P ) vK
(12)
60 + 1

12 − 196.11891P

d(12) = 12
(

1− 1.06−1/12
)

= 5.81277%

E(L) = (100000 + 196.11891P )0.591707− 196.11891P = 59170.7− 80.073978P

V ar(L) = (100000 + 196.11891P )2
(

2A
(12)
60:10 −

(
A

(12)
60:10

)2
)

= (100000 + 196.11891P )2 (0.357714− 0.5917072)

σL = (100000 + 196.11891P )
√

0.357714− 0.5917072 = (100000 + 196.11891P )0.087160

E(S) = 10000(59170.7− 80.073978P ), σS = 100(100000 + 196.11891P )0.087160

Pr (S < 0) = Φ
(

0− 10000(59170.7− 80.073978P )
100(100000 + 196.11891P )0.087160

)
= 0.95

0− 10000(59170.7− 80.073978P )
100(100000 + 196.11891P )0.087160 = Φ−1(0.9) = 1.2816

P = 742.37



Chapter 27

Reversionary bonus: loss-at-issue, policy value

27.1 concept

Prerequisite. Before reading this chapter, you’ll need to read Chapter 26 “Reversionary bonus and geometrically in-
creasing benefit: find EPV” and Chapter 14 “Loss-at-issue random variable, equivalence principle, net premium, gross
premium.”

After you understand how reversionary bonuses work and how to set up the equivalence equation, you’ll need to
identify all the cash flows: premiums, original benefits, the accrued reversionary bonuses, and various expenses. Make
sure you understand the difference between bonuses being added at the beginning of the year (BOY) and the bonuses
being at the end of the year (EOY). Since it’s very easy to miss a cash flow especially an expense component, you’ll
want to painstakingly keep track of each cash flow. Ask yourself: “Have I used all the information given to me?” If not,
chances are that you have dropped something.

27.2 illustrative problems

Example 27.2.1

For a special fully discrete with-profit whole insurance on (50), you are given:

• initial insurance: 100,000

The insurer prices the product on the following basis:

(i) Mortality: the Illustrative Life Table

(ii) i = 0.06

(iii) Bonuses: simple bonus rate 3% per year. The bonus is added at the end of the year.

(iv) initial expenses - per policy: 120 plus 50% of Year 1 premium

(v) renewal expenses - per policy: 15 plus 2% of the renewal premiums

(vi) per 1,000 expense: 0.1 in Year 1 and 0.01 in renewal years

(vii) claims expenses: 100 per claim

(viii) selective actuarial values: (IA)50 = 4.99329, (Iä)50 = 146.104583

What you need to do:

(a) Write down the expression for the gross premium loss-at-issue random variable

(b) Calculate the gross premium using the equivalence principle

Solution 27.2.1

PV
• total insurance

100, 000(1 + 0.03K50)vK50+1

= 100, 000
(

0.97 + 0.03(K50 + 1)
)
vK50+1

• claim expense 100vK50+1

• premium expense (0.02äK50+1 + 0.48)P

• per policy expense 15äK50+1 + 105
• per 1,000 expense

= 100
(

0.97 + 0.03(K50 + 1)
)

0.01äK50+1 + 100× 0.09

=
(

0.97 + 0.03(K50 + 1)
)
äK50+1 + 9

• total premiums P äK50+1

EPV

• death benefit 97, 000A50 + 3000(IA)50

• claim expense 100A50

• premium expense (0.02ä50 + 0.48)P

• per policy expense 15ä50 + 105

• per 1,000 expense 0.97ä50 + 0.03(Iä)50 + 9

• total premiums P ä50

183
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L0
g =

(
97, 100 + 3, 000(K50 + 1)

)
vK50+1 +

(
15.97 + 0.03(K50 + 1)

)
äK50+1 + 114− P (0.98ä0.98K50+1 − 0.48)

P (0.98ä50 − 0.48) = 97, 100A50 + 3000(IA)50 + 15.97ä50 + 0.03(Iä)50 + 114
P (0.98× 13.26683− 0.48) = 97100× 0.24905 + 3000× 4.99676 + 15.97× 13.26683 + 0.03× 146.104583 + 114

P = 39, 503.04
12.521491 = 3154.8

Example 27.2.2

For a special fully discrete 20-year with-profit endowment insurance policy on (45) with the initial sum insured of 100,000,
you are given the following gross premium basis:

(i) Mortality: the Illustrative Life Table

(ii) i = 0.06

(iii) Premium: level gross monthly premium P calculated using the equivalence principle

(iv) The insurer declares a simple reversionary bonus 2% per year. The bonus is added at the end of the year

(v) initial expenses: 150 + 0.6(12P ), that is, a fixed cost 150 plus 60% of Year 1 total gross premiums

(vi) renewal expenses: 3% of the second and subsequent monthly premiums

(vii) claims expenses: 100 on death; 50 on maturity

Selective actuarial values:

• A 1
45:20

= 0.088464, 20E45 = 0.256341, ä45:20 = 11.57510, (IA) 1
45:20

= 0.97740

• A 1
45:10

= 0.040540, 10E45 = 0.526515, ä45:10 = 7.64869, (IA) 1
45:10

= 0.22851, 10p45 = 0.942908

• A 1
55:10

= 7.457346, 10E55 = 0.486864, ä55:10 = 0.091022

What you need to do:

(a) Use the Woolhouse formula, calculate ä(12)
45:20 .

(b) Verify that P = 377.71

(c) 10 years after issue and immediately before the then premium due and immediately after the bonus is awarded,
the insurer decides to pay a terminal bonus to each surviving policyholder. The terminal bonus is equal to 90%
of the retrospective gross premium policy value. The gross premium policy value is calculated on the same basis
as the gross premium basis. Assume that insurer declares the annual 2% reversionary bonus at the end of each
year throughout the contract term consistent with the gross premium assumption. Calculate the terminal bonus
at t = 10.

(d) Explain whether the terminal bonus at t = 10 will be larger, the same, or smaller if the terminal bonus is equal
to 90% of the prospective gross premium policy value, instead of 90% of the retrospective gross premium policy
value, with the prospective policy value, the retrospective policy value, and the gross premium on the same basis.

(e) Calculate the prospective policy value at t = 10 under the same basis for which the retrospective gross premium
value is calculated.

Solution 27.2.2

EPV of each item:

• monthly gross premiums: 12P ä(12)
45:20

• initial death benefits: 100, 000A 1
45:20

• annual bonuses: 2, 000(IA) 1
45:20

− 2, 000A 1
45:20

• maturity benefit: 100, 000(1 + 0.02× 20)20E45

• death claim expense: 100A 1
45:20

• maturity claim expense: 5020E45

• initial expense: 150 + 0.6(12P )

• renewal expense: (0.03)12P ä(12)
45:20 − 0.03P

(a), (b)
(

(0.97)12ä(12)
45:20 − 0.6(12) + 0.03

)
P = (100000−2000+100)A 1

45:20
+2000(IA) 1

45:20
+(140000+50)20E45 +150

ä
(12)
45:20 = ä45:20 −

11
24 (1− 20E45) = 11.57510− 11

24 (1− 0.256341) = 11.23426

(
(0.97)12(11.23426)− 0.6(12) + 0.03

)
P = (100000−2000+100)0.088464+2000×0.97740+(140000+50)0.256341+150

123.59679P = 46683.535, P = 377.71
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(c) 10V
Retro = 1.0610

10p45

(
(0.97× 12ä(12)

45:10 + 0.03− 0.6× 12)P − (100000− 2000 + 100)A 1
45:10

− 2000(IA) 1
45:10

− 150
)

= 1.0610

0.942908
(
(0.97× 12× 7.43168 + 0.03− 0.6× 12)377.71− (98100)0.040540− 2000× 0.22851− 150

)
= 48206.70

ä
(12)
45:10 = ä45:10 −

11
24 (1− 10E45) = 7.64869− 11

24 (1− 0.526515) = 7.43168

0.9(48206.70) = 43386.03
(d) The terminal bonus will be the same. The prospective and the retrospective gross premium policy values will be
the same because (1) the gross premium is based on the equivalence principle, and (2) the policy value basis is the same
as the gross premium basis.

(e). Ten years after issue, for a policy still in force, we see a 10-year endowment policy. The policy has accrued 20,000
bonuses and will declare a 2,000 bonus each year. EPVs are:

• monthly gross premiums: 12P ä(12)
55:10

• initial benefits: 100, 000A 1
55:10

• accrued bonuses: 20, 000A 1
55:10

• future bonuses: 2, 000(IA) 1
55:10

− 2, 000A 1
55:10

• maturity benefit: 100, 000(1 + 0.02× 20)10E55

• death claim expense: 100A 1
55:10

• maturity claim expense: 5010E55

• renewal expense: (0.03)12P ä(12)
55:10

10V = (100, 000 + 20, 000 + 100− 2, 000)A 1
55:10

+ 2, 000(IA) 1
55:10

+ 14005010E55 − (0.97)12P ä(12)
55:10

ä
(12)
55:10 = ä55:10 −

11
24 (1− 10E55) = 7.45735− 11

24 (1− 0.486864) = 7.22216

(IA) 1
45:20

= (IA) 1
45:10

+ 10E45

(
(IA) 1

55:10
+ 10A 1

55:10

)
0.97740 = 0.22851 + 0.526515

(
(IA) 1

55:10
+ 10× 0.091022

)
, (IA) 1

55:10
= 0.51212

10V = 118100× 0.091022 + 2000× 0.51212 + 140050× 0.486864− (0.97)12× 377.71× 7.22216 = 48206.70

GENERAL FORMULA: for m ≤ n:

(IA)1
x:n

= (IA)1
x:m

+ mEx

(
(IA) 1

x+m:n−m
+mA 1

x+m:n−m

)
Example 27.2.3

For a special semi-continuous 20-pay with-profit whole insurance on (50), you are given:

• the initial insurance is 100,000

• death benefit is paid at the moment of death

The insurer prices the product on the following basis:

(i) Mortality: the Standard Select Survival Model

(ii) i = 0.05

(iii) Bonuses: simple bonus rate 2% per year. The bonus is added at the end of the year.

(iv) initial expenses: 150 plus 60% of Year 1 premium

(v) renewal expenses: 3% of the renewal premiums

(vi) claims expenses: 100 on death

(vii) EPV of continuous term insurance valuation method: claim acceleration approach

(viii) selective actuarial values: A[50] = 0.18913, (IA)[50] = 5.82662, ä[50]:20 = 12.84560

What you need to do:

(a) Write down the expression for the gross premium loss-at-issue random variable

(b) Calculate the gross premium using the equivalence principle

(c) Ten years after issue, bonuses totaling 20,000 have been declared. Calculate the prospective net premium reserve
for the policy at t = 10 using the Illustrative Life Table and i = 0.06.
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(d) In (c), if the retrospective reserving method is used, will the reserve be different from the prospective reserve?

(e) Calculate the net premium reserve at t = 1, 2, 3 respectively using both the retrospective method and the prospec-
tive method. Explain which reserving method, the retrospective or the prospective, is more prudent.

Solution 27.2.3

(a) L0
g = 150 + 0.57P + (100, 100 + 2, 000K[50])vT[50] − 0.97P ämin(1+K[50],20)

claim acceleration approach ⇒ T[x] = K[x] + 0.5 = (K[x] + 1)− 0.5
L0
g = 150 + 0.57P + (100, 100 + 2, 000K[50])vK[50]+1(1 + i)0.5 − 0.97P ämin(1+K[50],20)

= 150 + 0.57P +
(

98, 100 + 2, 000(K[50] + 1)
)
vK[50]+1(1 + i)0.5 − 0.97P ämin(1+K[50],20)

One common mistake is to forget that Standard Select Survival Model has a two year selection period and write

L0
g = 150 + 0.57P + (100, 100 + 2, 000K50)vT50 − 0.97P ämin(1+K50,20)

(b) E(L0
g) = 0 : 150 + 0.57P + 98, 100A[50](1 + i)0.5 + 2, 000(1 + i)0.5(IA)[50] − 0.97P ä[50]:20 = 0

P =
150 + 98100A[50](1 + i)0.5 + 2000(1 + i)0.5(IA)[50]

0.97ä[50]:20 − 0.57

= 150 + 98100× 0.18913(1.050.5) + 2000(1.050.5)5.82662
0.97× 12.84560− 0.57 = 31102.47

11.890227 = 2, 615.80

(c) Net premium reserves consider only the guaranteed benefits. Since no bonus is guaranteed at issue, the net premium
ignores any bonuses. However, the total accrued bonuses 20,000 during the first 10 years are guaranteed and need to be
included in 10V

n.

π = 100000× A50

ä50:20
= 100000× 1.060.5 × 0.24905

11.29184 = 2, 270.76

The Illustrative Life Table is an ultimate table. There’s no need to write [50].
METHOD 1

10V
n = 120000A60− πä60:10 = 120000× 1.060.5A60− πä60:10 = 120000× 1.060.5× 0.36913− 2270.76× 7.27894 = 29076

The net premium reserve at t = 10 is the net premium reserve of a 10-pay semi-continuous whole life insurance of
120,000 level death benefit on (60) using a modified net level premium π = 2, 270.76.
METHOD 2
At t = 10, the insurance contract at the attained age 60 consists of two policies: Policy One is a 10-pay semi-continuous
whole life insurance of 100,000 level death benefit; Policy Two is a fully paid-up 20,000 continuous insurance.

10V
n
1 = 100, 000A60 − πä60:10 = 100000× 1.060.5 × 0.36913− 2270.76× 7.27894 = 21475.53

10V
n
2 = 20, 000A60 = 20000× 1.060.5 × 0.36913 = 7600.85, 10V

n = 21475.53 + 7600.85 = 29076
(d) The prospective reserve is different from the retrospective reserve. This is mainly because the premium basis is
different from the reserving basis. The net level premium assumes no bonuses, but the prospective reserve at t = 10
includes the accrued bonuses 20,000 which are guaranteed for the future years.

(e) 1V
Retro = (0V

Retro + π)(1 + i)− 100000× 1.060.5q50

p50
= (0 + 2270.76)1.06− 100000× 1.060.5 × 0.00592

0.99408 = 1808.21

2V
Retro = (1V

Retro + π)(1 + i)− 102000× 1.060.5q51

p51
= (1808.21 + 2270.76)1.06− 102000× 1.060.5 × 0.00642

0.99358 = 3673.09

3V
Retro = (1V

Retro + π)(1 + i)− 104000× 1.060.5q52

p52
= (3673.09 + 2270.76)1.06− 104000× 1.060.5 × 0.00697

0.99303 = 5593.16

1V
Prosp = 102000A51 − πä51:19 = 102000× 1.060.5 × 0.25961− 2270.76× 10.97432 = 2343.00

2V
Prosp = 104000A52 − πä52:18 = 104000× 1.060.5 × 0.27050− 2270.76× 10.64111 = 4800.26

3V
Prosp = 106000A52 − πä53:17 = 106000× 1.060.5 × 0.28172− 2270.76× 10.29134 = 7375.98

The retrospective reserve is smaller because it doesn’t attempt to project future bonuses. If the premium basis and
the reserve basis are the same and the premium is calculated using the equivalence principle, the retrospective reserve’s
blindness to future liabilities doesn’t matter as this method produces the same reserve as does the prospective method.
However, in this problem, the two bases are different and the retrospective backward-looking approach is no longer
appropriate. In contrast, the prospective reserve method, when projecting future liabilities, at least considers the
bonuses that have accrued as of the valuation date. The prospective reserve method better reflects future liabilities.

Example 27.2.4
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Re-do the previous problem assuming that the annual bonuses are awarded at the beginning of the year, instead of the
end of the year.

Solution 27.2.4

(a) L0
g = 150 + 0.57P +

(
100, 100 + 2, 000(K[50] + 1)

)
vK[50]+1(1 + i)0.5 − 0.97P ämin(1+K[50],20)

(b) E(L0
g) = 0 : P =

150 + 10100A[50](1 + i)0.5 + 2000(1 + i)0.5(IA)[50]

0.97ä[50]:20 − 0.57

= 150 + 100100× 0.18913(1.050.5) + 2000(1.050.5)5.82662
0.97× 12.84560− 0.57 = 31, 490.06

11.890227 = 2, 648.40

(c) The net level premium is still π = 2, 270.76. The prospective net premium reserve at t = 10 is still 10V
n =

120000A60 − πä60:10 = 29076. Standing at t = 10, we see a 10-pay semi-continuous whole life insurance of 120,000 on
(60), no matter the annual bonuses are awarded at the beginning or the end of the year.

(d) Same answer as before.

(e) 1V
Retro = (0V

Retro + π)(1 + i)− 102000× 1.060.5q50

p50
= (0 + 2270.76)1.06− 102000× 1.060.5 × 0.00592

0.99408 = 1795.95

2V
Retro = (1V

Retro + π)(1 + i)− 104000× 1.060.5q51

p51
= (1795.95 + 2270.76)1.06− 104000× 1.060.5 × 0.00642

0.99358 = 3646.71

3V
Retro = (1V

Retro + π)(1 + i)− 106000× 1.060.5q52

p52
= (3646.71 + 2270.76)1.06− 106000× 1.060.5 × 0.00697

0.99303 = 5550.54

The prospective reserves remain unchanged.
The retrospective reserve is smaller when bonuses are added at the beginning of the year than bonuses are added at the
end of the year, causing the gap between the prospective method and the retrospective method to become bigger. The
prospective reserve is more prudent.

Example 27.2.5

For a special semi-continuous 20-pay with-profit whole insurance on (50), you are given:

• the initial insurance is 100,000

• death benefit is paid at the moment of death

The insurer prices the product on the following basis:

(i) Mortality: the Standard Select Survival Model

(ii) i = 0.05

(iii) Bonuses: compound bonus rate 2% per year. The bonus is added at the end of the year.

(iv) initial expenses: 150 plus 60% of Year 1 premium

(v) renewal expenses: 3% of the renewal premiums

(vi) claims expenses: 100 on death

(vii) EPV of continuous term insurance valuation method: claim acceleration approach

(viii) selective actuarial values: A[50] = 0.18913, ä[50]:20 = 12.84560, A[50]j = 0.35813 where j = 2.9411765%

What you need to do:

(a) Write down the expression for the gross premium loss-at-issue random variable

(b) Calculate the gross premium using the equivalence principle

(c) Ten years after issue, bonuses totaling 100, 000(1.0210 − 1) have been declared. Calculate the prospective net
premium reserve for the policy at t = 10 using the Illustrative Life Table and i = 0.06.

(d) Calculate the net premium reserve at t = 1, 2, 3 respectively using both the retrospective method and the prospec-
tive method.

Solution 27.2.5

(a) L0
g = 150 + 0.57P + 100000(1.02K[50] )vT[50] + 100vT[50] − 0.97P ämin(1+K[50],20)

claim acceleration approach ⇒ T[x] = K[x] + 0.5 = (K[x] + 1)− 0.5
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L0
g = 150 + 0.57P + 100000(1.02−1)(1.02K[50]+1 )vK[50]+1(1 + i)0.5 + 100vK[50]+1(1 + i)0.5 − 0.97P ämin(1+K[50],20)

= 150 + 0.57P + 100000(1.02−1)vK[50]+1
j (1 + i)0.5 + 100vK[50]+1(1 + i)0.5 − 0.97P ämin(1+K[50],20)

vj = 1.02v = 1.02
1 + i

, j = 1 + i

1.02 − 1 = 0.05− 0.02
1.02 = 2.9411765%

(b) E(L0
g) = 0 : 150 + 0.57P + 100000(1.02−1)A[50]j(1 + i)0.5 + 100A[50](1 + i)0.5 − 0.97P ä[50]:20 = 0

P =
150 + 100000(1.02−1)A[50]j(1 + i)0.5 + 100A[50](1 + i)0.5

0.97ä[50]:20 − 0.57

= 150 + 100000(1.02−1)× 0.35813× 1.050.5 + 100× 0.18913(1.050.5)
0.97× 12.84560− 0.57 = 36, 147.50

11.890227 = 3, 040.10

(c) METHOD 1

10V
n = 100000(1.0210)A60 − πä60:10 = 100000(1.0210)× 1.060.5A60 − πä60:10

= 100000(1.0210)× 1.060.5 × 0.36913− 2270.76× 7.27894 = 29798.26
The net premium reserve at t = 10 is the net premium reserve of a 10-pay semi-continuous whole life insurance of

100000(1.0210) level death benefit on (60) using a modified net level premium π = 2, 270.76.
METHOD 2
At t = 10, the insurance contract at the attained age 60 consists of two policies: Policy One is a 10-pay semi-continuous
whole life insurance of 100,000 level death benefit; Policy Two is a fully paid-up 100000(1.0210−1) continuous insurance.

10V
n
1 = 100, 000A60 − πä60:10 = 100000× 1.060.5 × 0.36913− 2270.76× 7.27894 = 21475.53

10V
n
2 = 100000(1.0210 − 1)A60 = 100000(1.0210 − 1)× 1.060.5 × 0.36913 = 8322.72

10V
n = 21475.53 + 8322.72 = 29798.25

(d) 1V
Retro = (0V

Retro + π)(1 + i)− 100000× 1.060.5q50

p50
= (0 + 2270.76)1.06− 100000× 1.060.5 × 0.00592

0.99408 = 1808.21

2V
Retro = (1V

Retro + π)(1 + i)− 100000× 1.02× 1.060.5q51

p51

= (1808.21 + 2270.76)1.06− 100000× 1.02× 1.060.5 × 0.00642
0.99358 = 3673.09

3V
Retro = (1V

Retro + π)(1 + i)− 100000× 1.022 × 1.060.5q52

p52

= (3673.09 + 2270.76)1.06− 100000× 1.022 × 1.060.5 × 0.00697
0.99303 = 5592.87

1V
Prosp = 100000× 1.02A51 − πä51:19 = 100000× 1.02× 1.060.5 × 0.25961− 2270.76× 10.97432 = 2343.00

2V
Prosp = 100000× 1.022A52 − πä52:18 = 100000× 1.022 × 1.060.5 × 0.27050− 2270.76× 10.64111 = 4811.40

3V
Prosp = 100000× 1.023A52 − πä53:17 = 100000× 1.023 × 1.060.5 × 0.28172− 2270.76× 10.29134 = 7411.01

Example 27.2.6

Same as the last problem EXCEPT the annual bonuses are awarded at the beginning of the year.
What you need to do:

(a) Write down the expression for the gross premium loss-at-issue random variable

(b) Calculate the gross premium using the equivalence principle.

Solution 27.2.6

(a) L0
g = 150 + 0.57P + 100000(1.02K[50]+1)vT[50] + 100vT[50] − 0.97P ämin(1+K[50],20)

= 150 + 0.57P + 100000(1.02K[50]+1 )vK[50]+1(1 + i)0.5 + 100vK[50]+1(1 + i)0.5 − 0.97P ämin(1+K[50],20)

= 150 + 0.57P + 100000vK[50]+1
j (1 + i)0.5 + 100vK[50]+1(1 + i)0.5 − 0.97P ämin(1+K[50],20)

vj = 1.02v = 1.02
1 + i

, j = 1 + i

1.02 − 1 = 0.05− 0.02
1.02 = 2.9411765%

(b) P =
150 + 100000A[50]j(1 + i)0.5 + 100A[50](1 + i)0.5

0.97ä[50]:20 − 0.57

= 150 + 100000× 0.35813× 1.050.5 + 100× 0.18913(1.050.5)
0.97× 12.84560− 0.57 = 36866.785

11.890227 = 3100.59
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27.3 check your knowledge

Homework 27.3.1

For fully discrete participating whole life insurance on (50) with an initial insurance of 100,000, you are given the following
premium basis:

(i) Mortality: the Illustrative Life Table

(ii) Simple reversionary bonus: 3% per year added at the beginning of year (including Year 1)

(iii) i = 0.06

(iv) The following expenses are payable at the beginning of the year:

Percent of Premium Per Policy
First Year 25% 200
Renewal 10% 50

(v) Selective actuarial value: (IA)51 = 5.06254

(vi) Premiums are determined using the equivalence principle.

• Write the expression for the gross premium loss at issue random variable L0
g and the net premium loss at issue

random variable L0
n

• Calculate the level annual gross premium P g and the level annual net premium Pn

Homework Solution 27.3.1

Difficulty

Percent of Premium Per Policy
All years 10% 50
First Year extra 15% 150

L0
g = 100000

(
1 + 0.03(K50 + 1)

)
vK50+1 + 0.1P gäK50+1 + 0.15P g + 50äK50+1 + 150− P gäK50+1

P g = 100000A50 + 100000× 0.03(IA)50 + 50ä50 + 150
0.9ä50 − 0.15

= 100000× 0.24905 + 100000× 0.03(4.99676) + 50× 13.26683 + 150
0.9× 13.26683− 0.15 = 3452.74

(IA)50 = A50 + 1E50(IA)51 = 0.24905× 0.937811 + 5.06254 = 4.99676

L0
n = 100000vK50+1 − PnäK50+1 , Pn = 100000A50

ä50
= 100000× 0.24905

13.26683 = 1877.24

Homework 27.3.2

For a special fully discrete with-profit whole insurance on (x), you are given:

• initial insurance: 100, 000

The insurer prices the product on the following basis:

(i) Mortality: the Illustrative Life Table

(ii) i = 0.06

(iii) Bonuses: compound bonus rate 2.5% per year. The bonus is added at the beginning of the year.

(iv) initial expenses — per policy: 100 plus 30% of Year 1 premium

(v) renewal expenses — per policy: 20 plus 4% of the renewal premiums

(vi) claims expenses: 50 per claim

What you need to do:

(a) Write down the expression for the gross premium loss-at-issue random variable

(b) Write down the expression for the gross premium using the equivalence principle

Homework Solution 27.3.2

Difficulty
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PV
• total insurance

100, 000(1.025)Kx+1vKx+1 = 100, 000vKx+1
j , j = 1.06

1.035−1

• claim cost 50vKx+1

• premium expense (0.04äKx+1 + 0.26)P

• per policy expense 20äKx+1 + 80

• total premiums P äKx+1

EPV

• death benefit 100, 000Axj

• claim cost 50Ax

• premium expense (0.04äx + 0.26)P

• per policy expense 20äx + 80

• total premiums P äx

L0
g = 100, 000vKx+1

j + 50vKx+1 + 20äKx+1 + 80− P (0.96äKx+1 − 0.26), P = 100, 000Axj + 50Ax + 20äx + 80
0.96äx − 0.26

Homework 27.3.3

For a 3-year fully discrete with-profit term insurance on (42), you are given:

• initial insurance: 10000

The insurer prices the product on the following basis:

(i) Mortality: the Illustrative Life Table

(ii) i = 0.06

(iii) Bonuses: super compound reversionary bonus with α = 2% and β = 5% per year. The bonus is vested at the end
of the year.

(iv) expenses: 5% of each premium

Calculate the gross premium using the equivalence principle.

Homework Solution 27.3.3

Difficulty
Death benefit for each year:

DB1 = 10000, DB2 = 10000(1 + 1× 0.02) = 10200, DB3 = 10000(1 + 2× 0.02) + 200× 0.05 = 10410

P = 10000d42v + 10200d43v
2 + 10410d43v

3

0.95(`42 + `43v + `43v2) = 10000(29646)(1.06−1) + 10200(31776)(1.06−2) + 10410(34098)(1.06−3)
0.95(9259571 + 9229925(1.06−1) + 9198149(1.06−2)) = 34.86

Homework 27.3.4

For a special fully discrete 15-year with-profit endowment insurance policy on (35) with the initial sum insured of 100,000,
you are given the following gross premium basis:

(i) Mortality: the Illustrative Life Table

(ii) i = 0.06

(iii) Premium: level gross monthly premium P calculated using the equivalence principle

(iv) The insurer declares a simple reversionary bonus 4% per year. The bonus is added at the end of the year

(v) initial expenses: 120 + 0.5(12P ), that is, a fixed cost 120 plus 50% of Year 1 total gross premiums

(vi) renewal expenses: 5% of the second and subsequent monthly premiums

(vii) claims expenses: 200 on death; 100 on maturity

Selective actuarial values:

• A 1
35:15

= 0.029982, 15E35 = 0.396458, ä35:15 = 10.13288, (IA) 1
35:15

= 0.24550

• A 1
35:5

= 0.009544, 5E35 = 0.738732, ä35:5 = 4.44713, (IA) 1
35:5

= 0.02869, 5p35 = 0.988590

• A 1
40:10

= 0.027667, 10E40 = 0.536674, ä40:10 = 7.69664

What you need to do:

(a) Use the Woolhouse formula, calculate ä(12)
35:15 .

(b) Calculate the monthly gross premium P .

(c) 5 years after issue and immediately before the then premium due and immediately after the bonus is awarded, the
insured plans to surrender the policy. The surrender value is equal 80% of the gross premium retrospective policy
value. The gross premium policy value is calculated on the same basis as the gross premium basis. The insurer has
declared the annual 4% reversionary bonus at the end of each year for the first 5 years consistent with the gross
premium assumption. Calculate the surrender value at t = 5.
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(d) Suppose that the surrender value is equal to 80% of the prospective gross premium policy, as opposed to the
80% of the retrospective gross premium policy value. The prospective policy value basis is the same as the gross
premium basis EXCEPT the insurer plans to use a reduced simple reversionary rate of 2% for the remaining 10
years. Calculate the revised surrender value at t = 5.

(e) Verify that if the bonus rate were 4% per year consistent with the gross premium basis, then the surrender value
in (c) and (d) would be equal.

(f) Suppose that the surrender value is equal to 80% of the net premium reserve. Calculate the revised surrender value
at t = 5 under the following net premium reserve basis:

• Mortality: Select Survival Model
• i = 0.05
• At the end of Year 5, bonuses totaling 20,000 have been declared.
• Premium: annual level premium
• Selective actuarial values: 5V35:15 = 0.255699, A1

40:10
= 0.005732

Homework Solution 27.3.4

Difficulty

EPV of each item:

• monthly gross premiums: 12P ä(12)
35:15

• initial death benefits: 100, 000A 1
35:15

• annual bonuses: 4, 000(IA) 1
35:15

− 4, 000A 1
35:15

• maturity benefit: 100, 000(1 + 0.04 × 15)15E35 =
16000015E35

• death claim expense: 200A 1
35:15

• maturity claim expense: 10015E35

• initial expense: 120 + 0.5(12P )

• renewal expense: (0.05)12P ä(12)
35:15 − 0.05P

(a), (b)
(

(0.95)12ä(12)
35:15 − 0.5(12) + 0.05

)
P = (100000−4000+200)A 1

35:15
+4000(IA) 1

35:15
+(160000+100)15E35 +120

ä
(12)
35:15 = ä35:15 −

11
24 (1− 15E35) = 10.13288− 11

24 (1− 0.396458) = 9.856255

P = (100000− 4000 + 200)0.029982 + 4000× 0.24550 + (160000 + 100)0.396458 + 120
(0.95)12× 9.856255− 0.5(12) + 0.05 = 67459.194

106.41131 = 633.95

(c) 5V
Retro = 1.065

5p35

(
(0.95× 12ä(12)

35:5 − 0.5× 12 + 0.05)P − (100000− 4000 + 200)A 1
35:5
− 4000(IA) 1

35:5
− 120

)
= 1.065

0.988590
(
(0.95× 12× 4.32738− 0.5× 12 + 0.05)633.95− (96200)0.009544− 4000× 0.02869− 120

)
= 35, 668.02

ä
(12)
35:5 = ä35:5 −

11
24 (1− 5E35) = 4.44713− 11

24 (1− 0.738732) = 4.32738

0.8(35668.02) = 28534.42

(d) 5 years after issue, if the policy is still in force, we see a 10-year endowment policy on (40). The policy has an
accrued bonus of 20,000 and will declare an annual bonus of 2,000 each year for the next 10 years. EPVs are:

• monthly gross premiums: 12P ä(12)
40:10

• initial benefits: 100, 000A 1
40:10

• accrued bonuses: 20, 000A 1
40:10

• future bonuses: 2, 000(IA) 1
40:10

− 2, 000A 1
40:10

• maturity benefit: (120, 000 + 20, 000)10E40

• death claim expense: 200A 1
40:10

• maturity claim expense: 10010E40

• renewal expense: (0.05)12P ä(12)
40:10

5V = (100, 000+20, 000+200−2, 000)A 1
40:10

+2, 000(IA) 1
40:10

+(100, 000+20, 000+20, 000+100)10E40−(0.95)12P ä(12)
40:10

= (118, 200)A 1
40:10

+ 2, 000(IA) 1
40:10

+ 140, 10010E40 − (0.95)12P ä(12)
40:10

ä
(12)
40:10 = ä40:10 −

11
24 (1− 10E40) = 7.69664− 11

24 (1− 0.536674) = 7.4842823
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(IA) 1
35:15

= (IA) 1
35:5

+ 5E35

(
(IA) 1

40:10
+ 5A 1

40:10

)
0.24550 = 0.02869 + 0.738732

(
(IA) 1

40:10
+ 5× 0.027667

)
, (IA) 1

40:10
= 0.15515

5V = 118200× 0.027667 + 2000× 0.15515 + 140100× 0.536674− (0.95)12× 633.95× 7.22216 = 26573.80

0.8(26573.80) = 21259

The prospective policy value is lower because the annual bonus rate for the remaining 10 years is lower than what is
assumed in the premium basis.

(e) 5 years after issue, if the policy is still in force, we see a 10-year endowment policy on (40). The policy has an
accrued bonus of 20,000 and will declare an annual bonus of 4,000 each year for the next 10 years. EPVs are:

• monthly gross premiums: 12P ä(12)
40:10

• initial benefits: 100, 000A 1
40:10

• accrued bonuses: 20, 000A 1
40:10

• future bonuses: 4, 000(IA) 1
40:10

− 4, 000A 1
40:10

• maturity benefit: (120, 000 + 40, 000)10E40

• death claim expense: 200A 1
40:10

• maturity claim expense: 10010E40

• renewal expense: (0.05)12P ä(12)
40:10

5V = (120, 000 + 200− 4, 000)A 1
40:10

+ 4, 000(IA) 1
40:10

+ 160, 10010E40 − (0.95)12P ä(12)
40:10

= 116200× 0.027667 + 4000× 0.15515 + 160100× 0.536674− (0.95)12× 633.95× 7.484283 = 35668.0 = 5V
Retro

(f) The net premium ignores any bonuses because bonuses are not guaranteed at issue. However, at t = 5, the accrued
bonuses 20,000 are guaranteed for the remainder of the contract. The reserve at t = 5 is the net premium reserve of a
10-year endowment insurance of 120,000 on (40) using the net level premium that is equal to the net level premium of
a 15-year endowment insurance of 100,000 on (35).

NP = 100000
A35:15

ä35:15
= 100000P35:15

5V = 120000A40:10 − 100000P35:15 ä40:10 =
(

100000A40:10 − 100000P35:15 ä40:10

)
+ 20000A40:10

= 1000005V35:15 + 20000A1
40:10

= 100000× 0.255699 + 20000(0.005732) = 25684.54

0.8× 25684.54 = 20547.63

Notation:

• P35:15 is the net level premium of a 15-year endowment insurance of 1 on (35)

• 5V35:15 is the net level premium reserve at t = 5 of a 15-year endowment insurance of 1 on (35)

Homework 27.3.5

An insurer issues a fully discrete 5-year with profit endowment insurance policy on (40). The policy has an initial
insurance amount of 20,000. Simple reversionary bonuses are added at the beginning of each year including Year 1.
(a) Show that the annual gross premium is 4,769 using the equivalence principle. Basis:

• Mortality: Standard Select Survival Table

• i = 0.05

• Initial expenses: 50% of the first premium

• Renewal expenses: 5% of the renewal premiums

• Bonus: Simple 4% per year added at the beginning of the year

• Selective actuarial values: A 1
[40]:4

= 0.002535, (IA) 1
[40]:4

= 0.00791, 5E[40] = 0.781208

(b) Calculate the net premium reserve at t = 0, 1, 2, 3, 4. Basis:

• Mortality: Illustrative Life Table

• i = 0.06

Homework Solution 27.3.5
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Difficulty

(a) P ä[40]:5 = 20, 000A[40]:5 + 800(IA)[40]:5 + 0.05P ä[40]:5 + 0.45P

A[40]:5 = 0.002535+0.781208 = 0.783743, (IA)[40]:5 = 0.00791+5×0.781208 = 3.91395, ä[40]:5 = 1− 0.783743
0.05/1.05 = 4.54140

P =
20, 000A[40]:5 + 800(IA)[40]:5

0.95ä[40]:5 − 0.45 = 20000× 0.783743 + 800× 3.91395
0.95× 4.54140− 0.45 = 4866.57

(b) The net premium ignores future bonuses as they are not guaranteed at issue. However, the accrued bonuses as of
the valuation date are guaranteed and should be counted as future benefits.

METHOD 1
NP = 200, 00

A40:5

ä40:5
= 20, 000P40:5 = 20000× 0.748675

4.44007 = 3372.35

0V = 0
One year after issue, the accrued bonus 800 is guaranteed and we see a 4-year endowment insurance of 20,800 on (41).

1V = 20800A41:4 −NPä41:4 = 20800× 0.793020− 3372.35× 3.65665 = 4, 163.30

2V = 21600A42:3 −NPä42:3 = 21600× 0.840124− 3372.35× 2.82447 = 8, 621.58

3V = 22400A43:2 −NPä43:2 = 22400× 0.890180− 3372.35× 1.94015 = 13, 397.17

4V = 23200A44:1 −NPä44:1 = 23200× 0.943396− 3372.35× 1 = 18, 514.44

5−V = 24000. Time 5− means immediately before the maturity payment of 24,000 is made.
METHOD 2. The logic is similar to Part (f) of the last problem.

0V = 0

1V = 200001V40:5 + 800A41:4 = 20000

(
1−

ä41:4

ä40:5

)
+ 800A41:4 = 20000

(
1− 3.65665

4.44007

)
+ 800× 0.793020 = 4, 163.30

2V = 200002V40:5 + 1600A42:3 = 20000

(
1−

ä42:3

ä40:5

)
+ 800A41:4 = 20000

(
1− 2.82447

4.44007

)
+ 1600× 0.840124 = 8, 621.58

3V = 200003V40:5 +2400A43:2 = 20000

(
1−

ä43:2

ä40:5

)
+2400A43:2 = 20000

(
1− 1.94015

4.44007

)
+2400×0.890180 = 13, 397.17

4V = 200004V40:5 +3200A44:1 = 20000

(
1−

ä44:1

ä40:5

)
+3200A44:1 = 20000

(
1− 1

4.44007

)
+3200×0.943396 = 18, 514.44

5−V = 200005−V40:5 + 4000 = 20000

(
1− 0

ä40:5

)
+ 4000 = 24000



Chapter 29

Multiple state model

29.1 introduction

So far our life insurance and annuity contracts have only two major states: the insured (x) is either alive or dead. In
this simple alive-dead model, the death benefit is triggered when (x) moves from the alive state to the dead state and
the annuity payment is triggered when (x) remains in the alive state. Now we’ll consider contracts where cash flows are
triggered when (x) moves from one of the multiple states to the same or a different state after a time interval.

Example 29.1.1

A 5-year combined death and sickness policy is issued to
healthy lives aged 45. Annual premiums are payable contin-
uously by healthy policyholders. The policy pays 100,000
immediately on death, with an additional 20,000 if the de-
ceased is sick at the time of death. There is also a benefit of
5,000 per year payable continuously to sick policyholders.

healthy 0 sick 1

dead 2

Example 29.1.2

An active member in a pension plan can
• withdraw from the plan due to job change and re-

ceives no benefit
• becomes disabled before the normal retirement and

receives a lump sum of 80,000
• retires at the normal retirement age 65 and receives

an annual pension benefit equal to 3% of the average
career salary for each year of service, or
• dies while in service and receives a lump sum of

100,000

active 0

withdrawn 1 disability retirement 2 age retirement 3 dead in service 4

29.2 notation

transition probability
We consider actuarial problems where cash flows depend on the continuation or the change of an individual’s state. An
individual can be in a finite set of n+ 1 states labelled 0, 1, . . . , n, with instantaneous transitions being possible between
selected pairs of states. The state random variable Y (t) takes one of the values 0, 1, . . . , n. The event Y (t) = i for t ≥ 0
means that the individual is in state i at age x+ t. Y (t) is called a stochastic process. Any random variable indexed by
time is a stochastic process. For example, let X(t) represents the temperature of a location at time t. If temperatures
are recorded continuously or at regular intervals, the stream of temperatures is a stochastic process.

tp
ij
x = P

[
Y (x + t) = j | Y (x) = i

]
is the probability that (x + t) is in state j given that (x) is in state i. This

definition implies that the state at x + t only depends on the state at x and not on the state history up to t. This is
called the Markov property, which assumes that the conditional probability distribution of future states depends only
on the present state, not on the sequence of states that precede the present state. If the process Y (t) meets the Markov
property, this process is called the Markov process. Otherwise, the process is called the non-Markov process.

In some actuarial applications, the stream of states doesn’t meet the Markov property. For example, whether a person
will be disabled 6 months from today may depend on whether he’s disabled today as well as on his disability history in
the past. As another example, the select mortality is not purely a function of the attained age but it depends on when
an individual is selected. However, the AMLCR textbook focuses on a Markov process.

Next, you need to understand the difference between tp
ii
x and tp

ii
x . In both symbols, (x) is in state i now and in state

i t years from now. However, ii means being continuously in state i during the time interval [0, t], whereas ii allows for
the individual to be in other states during (0, t) as long as he returns to the state i at time t. ii is like being grounded
at the state i, while ii is free to go anywhere (including staying put) as long as you return to your original state at the
end of the day. Clearly, ii is a special case of ii and tp

ii
x ≥ tp

ii
x .

201
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Example 29.2.1

In the basic survival model, 2px = 0.9. In the alive-dead
model, calculate 2p

00
x , 2p

01
x , 2p

10
x , 2p

11
x , 2p

00
x , 2p

11
x .

alive 0 dead 1

Solution 29.2.1

2p
00
x = 2p

00
x = 2px = 0.9 (once you leave state 1 and can

never go back in the alive-death model).
2p

11
x = 2p

11
x = 1 (once dead, always dead).

2p
01
x = 2qx = 0.1, 2p

10
x = 0 (can’t change from being

dead to alive),

force of transition or transition intensity

If the state variable Y (t) is continuous, then µijx = lim
h→0

hp
ij
x

h
for i 6= j is called the force of transition or the transition

intensity between state i and state j for age x. This is the counterpart of the force of mortality in the basic alive-dead
model and µ01

x = µx.

Example 29.2.2

In the alive(0)-dead(1) model, µ01
x = lim

h→0

hp
01
x

h
= lim

h→0

hqx
h

.

Explain why µ01
x is the force of mortality µx.

Solution 29.2.2

See section 5.1.

Another way to express µijx = lim
h→0

hp
ij
x

h
is hp

ij
x = hµijx + o(h), where o(h) is a function that approaches zero faster

than h approaches zero. And for a small h, hpijx ≈ hµijx .

29.3 find probability of being stuck in a state

tp
ii
x = exp

(
−
∫ t

0

n∑
j=0;j 6=i

µijx+sds

)
. The term

n∑
j=0;j 6=i

µijx+s is the total transition forces leaving state i; the transitions

entering state i are irrelevant. Learners tend to ask two questions: (1) “Why don’t the transitions entering state i
matter?” Answer: If we allow other states to flow into state i at any point during the interval [0, t], the insured won’t
be continuously in state i any more. And (2) “If we want the insured to be continuously in state i, then why the

term
n∑

j=0;j 6=i

µijx+s?” Answer: the forces that push the insured off the state i cause the state i population to dwindle

exponentially.
To help eliminate errors and correctly write the formula for tp

ii
x , change the multiple state diagram as follows: (1)

keep only the i state and delete all the other states, (2) keep only the arrows leaving state i and delete all the arrows
flowing into state i. Then sum up all the transition intensities in the new diagram and add a minus sign. The negative
sign is needed because all the arrows leaving state i are working again state i. By the way, if you forget the minus sign

in −
∫ t

0

n∑
j=0;j 6=i

µijx+sds, pretty soon you’ll find that tpiix will be greater than one.

Example 29.3.1

A 10-year sickness policy is issued to a healthy life age 50.
The policy pays a no-claim bonus of 1000 at the end of Year
10 if the insured remains healthy throughout the term of
the contract. The transition intensities are constants for all
ages. δ = 0.06. Calculate the EPV of the bonus.

Healthy Sick

Dead

0 1

2

µ10
x = 0.01

µ01
x = 0.02

µ 02x
=

0.04 µ
12
x

=
0.0

8

Solution 29.3.1

The probability of receiving the bonus is 10p
00
50.

Healthy

0
µ01
x = 0.02

µ 02x
=

0.04

10p
00
50 = exp

(
−
∫ 10

0 (µ01
50+s + µ02

50+s)ds
)

= exp
(
−∫ 10

0 (0.02 + 0.04)ds
)

= e−0.06(10) = e−0.6

EPV: 100010p
00
50e
−10δ = 1000e−0.12 = 886.92

Example 29.3.2

The transition intensities are constants for all ages. Calcu-
late the probability that (x) remains sick throughout the
next 3 years given that he’s sick today.

Healthy Sick

Dead

0 1

2

µ10
x = 0.01

µ01
x = 0.02

µ 02x
=

0.04 µ
12
x

=
0.0

8
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Solution 29.3.2

Sick
1

µ10
x = 0.01

µ
12
x

=
0.0

8

3p
11
x = exp

(
−
∫ 3

0
(µ10
x+s + µ12

x+s)ds
)

= e−3(0.09) =

0.7634

29.4 when getting back to a state is the same as being stuck in the state

There are 2 sufficient conditions for tpiix = tp
ii
x : (1) a state receives arrows but doesn’t send arrows, and (2) a state sends

arrows but doesn’t receive arrows. If a state both receives arrows and sends arrows, however, it’s not clear whether
tp
ii
x 6= tp

ii
x and you’ll need to test whether the insured can reenter state i after he leaves state i.

Example 29.4.1

For which states does the equation tp
ii
x = tp

ii
x hold?

Healthy Sick

Dead

0 1

2

µ01
x

µ 02x µ
12
x

Solution 29.4.1

The “healthy” state sends out arrows but doesn’t receive
arrows (there’s no re-entry into the “healthy” state). The
“dead” state receives arrows and but doesn’t send arrows
(once in and never out) – this state is called the absorbing
state. For these two states, the equation tp

ii
x = tp

ii
x holds

and we have tp
00
x = tp

00
x and tp

22
x = tp

22
x = 1. For any

absorbing state i, tpiix = tp
ii
x = 1.

The “sick” state receives an arrow and emits an arrow.
Does tp

22
x = tp

22
x hold? Surprisingly Yes. Once you leave

the “sick” state, you can never reenter it.

Example 29.4.2

For which states does the equation tp
ii
x = tp

ii
x hold?

Healthy Sick

Dead

0 1

2

µ10
x

µ01
x

µ 02x µ
12
x

Solution 29.4.2

Only the “dead” state satisfies the equation and tp
22
x = tp

22
x .

For the other states, tp00
x > tp

00
x and tp

11
x > tp

11
x .

Example 29.4.3

For which states does the equation tp
ii
x = tp

ii
x hold?

Alive Dead
0 1

µ01
x

Solution 29.4.3

Both the “alive” and the “dead” states satisfy the equation
tp
ii
x = tp

ii
x .

29.5 KFE (Kolmogorov’s forward equation)

KFE is d

dt
tp
ij
x =

n∑
k=0,k 6=j

(
tp
ik
x µ

kj
x+t − tp

ij
x µ

jk
x+t

)
. In a continuous multiple state model, except in simple cases such as

tp
ii
x = exp

(
−
∫ t

0

n∑
j=0;j 6=i

µijx+sds

)
, often there are no easy formulas for tpijx and we have to solve multiple KFEs. Before

worrying about how to solve KFEs, let’s first focus on how to correctly write KFEs.

Example 29.5.1

Write the formula for d

dt
tp

01
x .

Healthy Sick

Dead

0 1

2

µ10
x

µ01
x

µ 02x µ
12
x
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Solution 29.5.1

d

dt
tp

01
x =

∑
k=0,2

(
tp

0k
x µ

k1
x+t − tp

01
x µ

1k
x+t

)
. To write the plus

part, ask “How can I start from the beginning state, go to
a non-destination state, and finally get to the destination

state?” The only path is 0 → 0 → 1. So +tp
00
x µ

01
x+t; plus

because we are moving in. To write the minus part, ask
“How can I start from the beginning state, go to the desti-
nation state, and then get out of the destination state?”
Two paths: 0 → 1 → 0 and 0 → 1 → 2. Hence
−(tp01

x µ
10
x+t + tp

01
x µ

12
x+t); minus because we are moving out.

d

dt
tp

01
x = tp

00
x µ

01
x+t − tp

01
x (µ10

x+t + µ12
x+t)

Example 29.5.2

Write the formula for d

dt
tp

00
x .

Healthy Sick

Dead

0 1

2

µ10
x

µ01
x

µ 02x µ
12
x

Solution 29.5.2

“How can I start from the beginning state, go to a non-
destination state, and finally get to the destination state?”
0→ 1→ 0.

“How can I start from the beginning state, go to the des-
tination state, and then get out of the destination state?”
0→ 0→ 1 and 0→ 0→ 2.

d

dt
tp

00
x = tp

01
x µ

10
x+t − tp

00
x (µ01

x+t + µ02
x+t)

Example 29.5.3

Write the formula for d

dt
tp

22
x .

Healthy Sick

Dead

0 1

2

µ10
x

µ01
x

µ 02x µ
12
x

Solution 29.5.3

“How can I start from the beginning state, go to a non-
destination state, and finally get to the destination state?”
No way.

“How can I start from the beginning state, go to the des-
tination state, and then get out of the destination state?”
No way.

d

dt
tp

22
x = 0

Example 29.5.4

Write the formula for d

dt
tp

10
x , d

dt
tp

12
x , d

dt
tp

02
x .

Healthy Sick

Dead

0 1

2

µ10
x

µ01
x

µ 02x µ
12
x

Solution 29.5.4

d

dt
tp

10
x = tp

11
x µ

10
x+t − tp

10
x (µ01

x+t + µ02
x+t)

d

dt
tp

12
x = tp

11
x µ

12
x+t + tp

10
x µ

02
x+t

d

dt
tp

02
x = tp

00
x µ

02
x+t + tp

01
x µ

12
x+t

Example 29.5.5

Use KFE to derive the formula:
tp

00
x = exp

(
−
∫ t

0 (µ01
x+s + µ02

x+s)ds
)

.

Healthy Sick

Dead

0 1

2

µ10
x

µ01
x

µ 02x µ
12
x

Solution 29.5.5

The KFE for tp00
x is d

dt
tp

00
x = tp

01
x µ

10
x+t− tp00

x (µ01
x+t+µ02

x+t).
Since we want the state to be always 0, set tp

01
x = 0 and

we’ll get the KFE for tp
00
x : d

dt
tp

00
x = −tp00

x (µ01
x+t + µ02

x+t),
1

tp00
x

d

dt
tp

00
x = d

dt
ln tp00

x = −(µ01
x+t + µ02

x+t). Integrate

both sides: tp
00
x = C exp

(
−
∫ t

0 (µ01
x+s + µ02

x+s)ds
)

, where

C is a constant. Since 0p
00
x = 1, C = 1 and tp

00
x =

exp
(
−
∫ t

0 (µ01
x+s + µ02

x+s)ds
)

.

29.6 Euler method for solving KFEs

Example 29.6.1

You are given the following model (from AMLCR textbook Example 8.5)
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• µ01
x = a1 + b1 exp(c1x), µ10

x = 0.1µ01
x , µ02

x = a2 + b2 exp(c2x), µ12
x = µ02

x

• a1 = 0.0004, b1 = 3.4674× 10−6, c1 = 0.138155, a2 = 0.0005, b2 = 7.5858× 10−5, c2 = 0.087498

Healthy Sick

Dead

0 1

2

µ10
x

µ01
x

µ 02x µ
12
x

Let h = 1/12 and x = 60. Calculate the following probabilities:

• hp
00
x , the probability that a healthy (x) is still healthy one month from today

• hp
01
x , the probability that a healthy (x) is sick one month from today

• hp
02
x , the probability that a healthy (x) is dead one month from today

• 2hp
00
x , the probability that a healthy (x) is still healthy two months from today

• 2hp
01
x , the probability that a healthy (x) is sick two months from today

• 2hp
02
x , the probability that a healthy (x) is dead two months from today

Solution 29.6.1

The derivative of tp00
x is d

dt
tp

00
x = tp

01
x µ

10
x+t − tp

00
x (µ01

x+t + µ02
x+t). Notice that the term tp

00
x appears on both sides. In

addition, the righthand side has a term tp
01
x . Like most other first order differential equations, this equation doesn’t have

an exact solution. However, we can use numerical methods to approximate solutions to differential equations. There are
many methods to approximate solutions to a differential equation. One of the oldest and easiest method was originally
devised by Euler and is called the Euler method.

This is the essence of the Euler method. Suppose we need to find the value of an unknown function f(x) at x = b.
We know the function’s initial value f(a). We also know the slope of f(x) at any point. Then we can divide [a, b] into
n subintervals each of length h = (b − a)/n and successively use the tangent line approximation to find f(b). First,
f(a+h) ≈ f(a)+hf ′(a). Next, f(a+2h) ≈ f(a+h)+hf ′(a+h). This process continues till f(b) ≈ f(b−h)+hf ′(b−h).
Now let’s see the Euler method in action.

hp
00
x ≈ 0p

00
x + h

[
tp

01
x µ

10
x+t − tp

00
x (µ01

x+t + µ02
x+t)

]
t=0

= 0p
00
x + h

[
0p

01
x µ

10
x − 0p

00
x (µ01

x + µ02
x )
]

0p
00
x = 1, 0p

01
x = 0

µ01
x + µ02

x = a1 + b1 exp(c1x) + a2 + b2 exp(c2x)

= 0.0004 + 3.4674× 10−6e0.138155(60) + 0.0005 + 7.5858× 10−5e0.087498(60) = 0.029158122

⇒ hp
00
x ≈ 1− 1

12(µ01
x + µ02

x ) = 1− 0.029158122
12 = 0.997570

d

dt
tp

01
x = tp

00
x µ

01
x+t − tp

01
x (µ10

x+t + µ12
x+t)

⇒ hp
01
x ≈ 0p

01
x + h

[
0p

00
x µ

01
x − 0p

01
x (µ10

x + µ12
x )
]

= hµ01
x

= 0.0004 + 3.4674× 10−6e0.138155(60)

12 = 0.001184

d

dt
tp

02
x = tp

00
x µ

02
x+t + tp

01
x µ

12
x+t

hp
02
x ≈ 0p

02
x + h

[
0p

00
x µ

02
x + 0p

01
x µ

12
x

]
= hµ02

x

= 0.014954241
12 = 0.001246

Alternatively,
hp

02
x = 1− (hp00

x + hp
01
x ) = 1− (0.997570 + 0.001184) = 0.001246

2hp
00
x ≈ hp

00
x + h

[
hp

01
x µ

10
x+h − hp

00
x (µ01

x+h + µ02
x+h)

]
= 0.997570 + 0.001184× 0.001436372− 0.997570(0.014363722 + 0.01506002)

12 = 0.995124

2hp
01
x ≈ hp

01
x + h

[
hp

00
x µ

01
x+h − hp

01
x (µ10

x+h + µ12
x+h)

]
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= 0.001184 + 0.997570× 0.014363722− 0.001184(0.001436372 + 0.01506002)
12 = 0.002376

2hp
02
x ≈ hp

02
x + h

[
hp

00
x µ

02
x+h + hp

01
x µ

12
x+h

]
= 0.001246 + 0.997570× 0.014363722 + 0.001184× 0.01506002

12 = 0.002500

Alternatively,
2hp

02
x = 1− (2hp

00
x + 2hp

01
x ) = 1− (0.995124 + 0.002376) = 0.002500

By the way, the Euler method does not require you to divide the interval [a, b] into subintervals of an equal length.
However, equal length subintervals are often chosen for the ease of implementation.

29.7 getting back and being stuck, various transition probabilities

In a word problem, it may not be immediately clear whether you should use tpiix or tpiix . If re-entry to state i is impossible,
then tp

ii
x = tp

ii
x and it doesn’t matter which one you use. However, if re-entry is possible, then tp

ii
x 6= tp

ii
x and water gets

muddy. Ask “Is re-entry to state i allowed in the event?” If YES, use tp
ii
x . If NO, then use tp

ii
x .

Example 29.7.1

A 10-year sickness policy on a healthy life (50) pays
100,000 at the moment when the insured becomes sick.
δ = 0.06. Calculate the EPV of this policy.

Healthy Sick

Dead

0 1

2

µ01
x = 0.02

µ 02x
=

0.04 µ
12
x

=
0.0

8

Solution 29.7.1

The death benefit is paid at t if the insured (1) is still in
state 0 at t (e.g. neither dead nor disabled at t), prob:
tp

00
50, and (2) transitions to state 1 during [t, t + dt], prob:

µ01
50+tdt.

100000
∫ 10

0 e−δttp
00
50µ

01
50+tdt = 100000

∫ 10
0 e−δttp

00
50µ

01
50+tdt =

100000
∫ 10

0 e−0.06te−(0.02+0.04)t0.02dt = 100000× 2
12

(
1 −

e−0.12(10)) = 11646.763

Example 29.7.2

The transition intensities are constants for all ages. Cal-
culate the probability that a healthy life (x) today is still
healthy 10 years from today.

Healthy Disabled

Dead

0 1

2

µ01
x = 0.06

µ 02x
=

0.02 µ
12
x

=
0.0

4

Solution 29.7.2

10p
00
x = 10p

00
x = e−(0.06+0.02)10 = e−0.8.

Example 29.7.3

The transition intensities are constants for all ages. Calcu-
late the probability that a healthy life (x) today is disabled
10 years from today.

Healthy Disabled

Dead

0 1

2

µ01
x = 0.06

µ 02x
=

0.02 µ
12
x

=
0.0

4

Solution 29.7.3

We want to start from state 0 today and arrive at state
1 ten years later. We can (1) hang out at state 0 during
[0, t], prob: tp

00
x = e−0.08t, (2) instantly transition to state

1 during [t, t+ dt], prob: dtp01
x+t = µ01

x+tdt+ o(dt) ≈ 0.06dt,
and (3) hang out in state 1 during [t+dt, 10] ≈ [t, 10], prob:
10−tp

11
x+t = e−0.04(10−t). For any 0 ≤ t ≤ 10, the total prob-

ability of the 3 parts is p(t) = e−0.08t0.06dte−0.04(10−t).
We sum p(t) by all the t’s from 0 to 10: 10p

01
x =∫ 10

0 tp
00
x µ

01
x+t10−tp

11
x+tdt =

∫ 10
0 e−0.08t0.06e−0.04(10−t)dt =

0.06e−0.4 ∫ 10
0 e−0.04tdt = 6e−0.4

4
(
1− e−0.4) = 0.3315

Example 29.7.4

The transition intensities are constants for all ages. A
healthy insured is age x today. Let A represent the proba-
bility that the insured is dead 10 years from today and he’s
disabled before death. Calculate A.
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Healthy Disabled

Dead

0 1

2

µ01
x = 0.06

µ 02x
=

0.02 µ
12
x

=
0.0

4

Solution 29.7.4

We want to complete the path 0 → 1 → 2 in 10 years.
A =

∫ 10
0 tp

01
x µ

12
x+t10−tp

22
x+tdt =

∫ 10
0 tp

01
x µ

12
x+tdt. From

the previous problem, mp
01
x =

∫m
0 tp

00
x µ

01
x+tm−tp

11
x+tdt =∫m

0 e−0.08t0.06e−0.04(m−t)dt = 0.06e−0.04m ∫m
0 e−0.04tdt =

0.06
0.04

(
e−0.04m − e−0.08m).

A =
∫ 10

0 tp
01
x µ

12
x+tdt =

∫ 10
0

0.06
0.04

(
e−0.04t − e−0.08t) 0.08dt =

0.12
(

1− e−0.4

0.04 − 1− e−0.8

0.08

)
= 0.16303

Example 29.7.5

The transition intensities are constants for all ages. A
healthy insured is age x today. Let B represent the proba-
bility that the insured is dead 10 years from today and he’s
healthy before death. Calculate B.

Healthy Disabled

Dead

0 1

2

µ01
x = 0.06

µ 02x
=

0.02 µ
12
x

=
0.0

4

Solution 29.7.5

We want to complete the path 0 → 2 in 10 years. B =∫ 10
0 tp

00
x µ

02
x+tdt =

∫ 10
0 tp

00
x µ

02
x+tdt =

∫ 10
0 e−0.08t0.02dt =

0.021− e−0.8

0.08 = 0.1377

Example 29.7.6

The transition intensities are constants for all ages. A
healthy insured is age x today. Let C represent the proba-
bility that the insured is dead 10 years from today.

Healthy Disabled

Dead

0 1

2

µ01
x = 0.06

µ 02x
=

0.02 µ
12
x

=
0.0

4

Solution 29.7.6

C = A+B = 0.16303 + 0.1377 = 0.30073

Example 29.7.7

The transition intensities are constants for all ages. Cal-
culate the probability that a healthy life (x) today is still
healthy 10 years from today. Is it 10p

00
x or 10p

00
x ?

Healthy Disabled

Dead

0 1

2

µ10
x = 0.01

µ01
x = 0.06

µ 02x
=

0.02 µ
12
x

=
0.0

4

Solution 29.7.7

Now 10p
00
x > 10p

00
x . Which one to use?

When you count the number of people still healthy
at t = 10, should you include those who return to the
healthy state after recovering from prior disabilities? Yes
you should. Then the probability is 10p

00
x .

There’s no closed-form formula for 10p
00
x . We can use

the Euler method to approximate 10p
00
x .

Example 29.7.8

The transition intensities are constants for all ages. Cal-
culate the probability that a healthy life (x) today is ever
disabled during the next 10 years.

Healthy Disabled

Dead

0 1

2

µ10
x = 0.01

µ01
x = 0.06

µ 02x
=

0.02 µ
12
x

=
0.0

4



208 CHAPTER 29. MULTIPLE STATE MODEL

Solution 29.7.8

The insured can travel back and forth between state 0 and
state 1 repeatedly and have many disability relapses. Do
disability relapses matter in this problem? Surprisingly
NO. The event “ever being disabled” is the same as walking
through the path 0 → 1 at least once, which is the same
as having the 1st period of disability. We can simplify the
diagram into:

Healthy Disabled

Dead

0 1

2

µ01
x = 0.06

µ 02x
=

0.02 µ
12
x

=
0.0

4

The insured can (1) hang out at state 0 during [0, t],
prob: tp

00
x , and (2) move from state 0 to 1 in the next

instant, prob: µ01
x+tdt. The probability of making these

two moves is p(t) = tp
00
x µ

01
x+tdt. Next, sum p(t) from

t = 0 to t = 10:
∫ 10

0 tp
00
x µ

01
x+tdt =

∫ 10
0 e−0.08t0.06dt =

6
8
(
1− e−0.8) = 0.4130.

Example 29.7.9

The transition intensities are constants for all ages. Con-
sider two probabilities:
• A, as calculated in the last problem, is the probabil-

ity that a healthy life (x) today is disabled at some
point during the next 10 years.

• B = 10p
01
x is the probability that a healthy life (x)

today is disabled at the end of Year 10.
Actuary Moray is puzzled by the fact that there’s an

exact solution to A yet we have to use the Euler method to
approximate B. Help Moray understand why.

Healthy Disabled

Dead

0 1

2

µ10
x = 0.01

µ01
x = 0.06

µ 02x
=

0.02 µ
12
x

=
0.0

4

Solution 29.7.9

A is the probability that the first disability occurs during
the next 10 years. In B, however, the insured can travel
back and forth between state 0 and 1 any number of times
(e.g. becoming newly disabled again and again) as long as
he’s disabled at the end of Year 10. B is the probability
that a healthy life now becomes newly disabled at the end
of Year 10 and that this disability is the n-th time (where
n = 1, 2, . . .) that the insured is disabled during the first 10
years. Clearly, B is much harder to find.

Example 29.7.10

Which expression is the probability that a healthy life (x)
today is disabled during the first 10 years and remains dis-
abled throughout the remainder of the first 10 years?

(A)
∫ 10

0 tp
00
x µ

01
x+t10−tp

11
x+tdt

(B)
∫ 10

0 tp
01
x 10−tp

11
x+tdt

Healthy Disabled

Dead

0 1

2

Solution 29.7.10∫ 10
0 tp

00
x µ

01
x+t10−tp

11
x dt is the probability that the insured’s

first disability lasts throughout the remainder of the first
10 years, whereas

∫ 10
0 tp

01
x 10−tp

11
x+tdt is the probability

that the insured’s any disability lasts throughout the re-
mainder of the first 10 years. The correct expression is∫ 10

0 tp
01
x 10−tp

11
x+tdt.

Theoretically, for example, an insured can have many
“healthy this month, disabled next month” cycles be-
fore finally becoming disabled continuously throughout
the remainder of the first 10 years. Such a scenario
is discarded in

∫ 10
0 tp

00
x µ

01
x+t10−tp

11
x dt but is captured in∫ 10

0 tp
01
x 10−tp

11
x+tdt.

Example 29.7.11

A 10-year disability insurance is issued to a healthy life
(x). Premiums are payable continuously at the rate of P
per year while the insured is healthy. Which expression is
the EPV of the premiums?

(A) P
∫ 10

0 e−δttp
00
x dt

(B) P
∫ 10

0 e−δttp
00
x dt

Healthy Disabled

Dead

0 1

2
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Solution 29.7.11

If the insured returns to the healthy state after re-
covering from disability during the term of the policy,

will the insured pay the premium? YES. The EPV is
P
∫ 10

0 e−δttp
00
x dt.

Example 29.7.12

A 10-year sickness insurance policy on a healthy life (x)
pays a first-sickness-recovery bonus. If the insured is sick
but later recovers from his first sickness during the term of
the contract, a bonus of 100 is immediately paid upon re-
covery. The transition intensities are constants for all ages.
δ = 0.07. Calculate the EPV of the bonus.

Healthy Sick

Dead

0 1

2

µ10
x = 0.01

µ01
x = 0.06

µ 02x
=

0.02 µ
12
x

=
0.0

4

Solution 29.7.12

The bonus is paid if the insured walks through the path
0 → 1 → 0 in 10 years. The insured needs to do the
following: (1) stay in state 0 during [0, t], prob: tp

00
x , (2)

transition to state 1 during [t, t+dt], prob: µ01
x+tdt, (3) stay

in state 1 during [t, t+u], prob: up11
x+t, and (4) finally tran-

sition to state 0 during [t+ u, t+ u+ du], prob: µ10
x+t+udu.

The bonus is paid at t+u. The constraints are t ≥ 0, u ≥ 0,
and 0 ≤ t+ u ≤ 10.

100
∫ 10
t=0

∫ 10−t
u=0 e−δ(t+u)

tp
00
x µ

01
x+tup

11
x+tµ

10
x+t+ududt =

100
∫ 10
t=0

∫ 10−t
u=0 e−0.07(t+u)e−0.08t0.06e−0.05u0.01dudt =

0.06
∫ 10

0 e−0.15t ∫ 10−t
0 e−0.12ududt = 0.06

∫ 10
0

1− e−0.12(10−t)

0.12 e−0.15tdt

= 0.5
(∫ 10

0 e−0.15tdt− e−1.2 ∫ 10
0 e−0.03tdt

)
= 0.5

(
1− e−1.5

0.15 − e−1.2 1− e−0.3

0.03

)
= 1.2885

29.8 Check your knowledge

Homework 29.8.1

(MLC: Spring 2016 Q4) A 5-year sickness insurance policy
is based on the following Markov model:

Healthy Sick

Dead

0 1

2

You are given the
following constant forces of transition:

(i) µ01 = 0.05
(ii) µ10 = 0.02

(iii) µ02 = 0.01
(iv) µ12 = 0.06

Calculate the probability that a Healthy life will become
Sick exactly once during the 5 years and remain continu-
ously Sick from that point until the end of the 5 years.

Homework Solution 29.8.1

Difficulty∫ 5
0 tp

00
x µ

01
x+t5−tp

11
x+tdt=

∫ 5
0 e
−(0.05+0.01)t0.05e−(5−t)(0.02+0.06)dt =

0.17624544

Homework 29.8.2

(spring 2012 MLC Q12) Employees in Company ABC can
be in:

State 0: Non-executive employee

State 1: Executive employee

State 2: Terminated from employment

John joins Company ABC as a non-executive employee at
age 30. You are given:

(i) µ01 = 0.01 for all years of service

(ii) µ02 = 0.06 for all years of service

(iii) µ12 = 0.02 for all years of service

(iv) Executive employees never return to the non-
executive employee state.

(v) Employees terminated from employment never get re-
hired.

(vi) The probability that John lives to age 65 is 0.9, re-
gardless of state.

Calculate the probability that John will be an executive
employee of Company ABC at age 65.
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Homework Solution 29.8.2

Difficulty

Non Exe

Fired

0 1

2

0.01

0.06 0.0
2

The probability that John will be an executive employee
of Company ABC at age 65 is:

35p30 × 35p
01
30 = 0.935p

01
30

35p
01
30 =

∫ 35
0 tp

00
30µ

01
30+t35−tp

11
30+tdt

=
∫ 35

0 e−(0.01+0.06)t0.01e−0.02(35−t)dt = 0.258
The desired probability is 0.9(0.258) = 0.2322

Homework 29.8.3

(MLC: Spring 2014 Q3) A continuous Markov process
is modeled by the following multiple state diagram:

state 0 state 1

state 2

You are given the following constant transition intensities:
(i) µ01 = 0.08

(ii) µ02 = 0.04
(iii) µ10 = 0.10
(iv) µ12 = 0.05

For a person in State 1, calculate the probability that the
person will continuously remain in State 1 for the next 15
years.

Homework Solution 29.8.3

Difficulty

15p
11
x = exp

(
−
∫ 15

0 (µ10
x+s + µ12

x+s)ds
)

= e−15(0.15) =
0.1054

Homework 29.8.4

(Exam MLC: Spring 2012 Q28) You are using Euler’s
method to calculate estimates of probabilities for a mul-
tiple state model with states 0, 1, 2. You are given:

(i) The only possible transitions between states are: 0 to
1, 1 to 0, and 1 to 2

(ii) For all x, µ01
x = 0.3, µ10

x = 0.1, µ12
x = 0.1

(iii) Your step size is 0.1.

(iv) You have calculated that 0.6p
00
x = 0.8370, 0.6p

01
x =

0.1588, 0.6p
02
x = 0.0042,

Calculate the estimate of 0.8p
01
x using the specified proce-

dure.

Homework Solution 29.8.4

Difficulty

0 1

2

µ10
x = 0.1

µ01
x = 0.3

µ
12
x

=
0.1

d

dt
tp

00
x = t

[
tp

01
x µ

10
x+t − tp

00
x µ

01
x+t

]
= t
[
0.1tp01

x − 0.3tp00
x

]
d

dt
tp

01
x = t

[
tp

00
x µ

01
x+t − tp

01
x (µ10

x+t +µ12
x+t)

]
= t
[
0.3tp00

x −

0.2tp01
x

]
0.7p

00
x ≈ 0.6p

00
x + 0.1(0.10.6p

01
x − 0.30.6p

00
x ) = 0.8370 +

0.1(0.1(0.1588)− 0.3(0.8370)) = 0.813478
0.7p

01
x ≈ 0.6p

01
x + 0.1(0.30.6p

00
x − 0.20.6p

01
x ) = 0.1588 +

0.1(0.3(0.8370)− 0.2(0.1588)) = 0.180734
0.8p

01
x ≈ 0.7p

01
x + 0.1(0.30.7p

00
x − 0.20.7p

01
x ) = 0.180734 +

0.1(0.3(0.813478)− 0.2(0.180734)) = 0.20152366

Homework 29.8.5

The transition intensities are constants for all ages. Write
down the KFEs for the following model:

Healthy Disabled

Dead

0 1

2

µ10
x

µ01
x

µ 02x µ
12
x
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Homework Solution 29.8.5

Difficulty

d

dt
tp

00
x = tp

01
x µ

10
x+t − tp

00
x (µ01

x+t + µ02
x+t)

d

dt
tp

01
x = tp

00
x µ

01
x+t − tp

01
x (µ10

x+t + µ12
x+t)

d

dt
tp

02
x = tp

00
x µ

02
x+t + tp

01
x µ

12
x+t

d

dt
tp

11
x = tp

10
x µ

01
x+t − tp

11
x (µ10

x+t + µ12
x+t)

d

dt
tp

10
x = tp

11
x µ

10
x+t − tp

10
x (µ01

x+t + µ02
x+t)

d

dt
tp

12
x = tp

11
x µ

12
x+t + tp

10
x µ

02
x+t

tp
22
x = 1 and d

dt
tp

22
x = 0

Homework 29.8.6

A disability insurance is issued to healthy life (x). The
transition intensities are constants for all ages. Let the
contract issue time be time zero. Use the Euler method.
Set h = 1/12. Approximate 3hp

00
x , 3hp

01
x , 3hp

11
x , 3hp

10
x . In

addition, estimate 3hp
00
x − 3hp

00
x .

Healthy Disabled

Dead

0 1

2

µ10
x = 0.01

µ01
x = 0.02

µ 02x
=

0.03 µ
12
x

=
0.0

6

Homework Solution 29.8.6

Difficulty

t tp
00
x tp

01
x tp

02
x

0 1.00000 0.00000 0.00000
h 0.99583 0.00167 0.00250
2h 0.99169 0.00332 0.00500
3h 0.98756 0.00495 0.00749

3hp
00
x =

∫ 3/12
0 e−0.05tdt = 1− e−0.05×3/12

0.05 = 0.24844,

3hp
00
x − 3hp

00
x = 0.98756− 0.24844 = 0.73912

Homework 29.8.7

You are applying the Euler method to the following
model (AMLCR textbook Example 8.5):
• µ01

x = a1 + b1 exp(c1x), µ10
x = 0.1µ01

x , µ02
x = a2 +

b2 exp(c2x), µ12
x = µ02

x

• a1 = 0.0004, b1 = 3.4674 × 10−6, c1 = 0.138155,
a2 = 0.0005, b2 = 7.5858× 10−5, c2 = 0.087498

Healthy Sick

Dead

0 1

2

µ10
x

µ01
x

µ 02x µ
12
x

Let h = 1/12 and x = 50. For n = 96, nhp00
x = 0.880641

and nhp
01
x = 0.048416. Calculate (n+1)hp

00
x .

Homework Solution 29.8.7

Difficulty

d

dt
tp

00
x = tp

01
x µ

10
x+t − tp

00
x (µ01

x+t + µ02
x+t),

(n+1)hp
00
x ≈ nhp

00
x +h

(
nhp

01
x µ

10
x+nh − nhp

00
x (µ01

x+nh + µ02
x+nh)

)
nh = 96/12 = 8, µ01

58 = 0.010871316, µ02
58 =

0.012633763, µ10
58 = 0.001087132

(n+1)hp
00
x ≈ 0.880641+(1/12)

(
0.048416(0.001087132)−

0.880641(0.010871316 + 0.012633763)
)

= 0.87892

Homework 29.8.8

A 10-year disability insurance policy is issued to healthy
life (x). The policy pays 100,000 immediately at the onset
of disability.

Healthy Disability

Dead

0 1

2

µ10
x

µ01
x

µ 02x µ
12
x

Which expression is the EPV for this policy?

(A) 100000
∫ 10

0 e−δttp
00
x µ

01
x+tdt

(B) 100000
∫ 10

0 e−δttp
00
x µ

01
x+tdt

Homework Solution 29.8.8

Difficulty
A is correct. The insured can be newly disabled many times
during the term of the contract and each new disability trig-
gers the benefit. A counts for this while B is the EPV of
the benefit for the first disability during the term of the
contract. There’s no exact way to calculate the integral
100000

∫ 10
0 e−δttp

00
x µ

01
x+tdt as there’s no exact way to find

tp
00
x . You can use the trapezoidal rule or the Simpson’s

rule or other numerical integration for approximation. The

Simpson’s rule is
∫ b
a
f(x)dx ≈ b− a

6

[
f(a) + 4f

(
a+ b

2

)
+

f(b)
]
.
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Homework 29.8.9

A combined 10-year term life and disability insurance pol-
icy is issued to healthy life (x). The policy pays 100,000
immediately on death or the onset of disability. No further
benefit is paid in the event of death after a prior disability
claim has been paid.

The transition intensities are constants for all ages.
δ = 0.05. Calculate the EPV of this policy.

Healthy Disability

Dead

0 1

2

µ01
x = 0.004

µ 02x
=

0.002 µ
12
x

=
0.0

08

Homework Solution 29.8.9

Difficulty
We can ignore path 1 → 2 because death after disability
will not trigger the death benefit.

100000
∫ 10

0 e−δttp
00
x (µ01

x+t + µ02
x+t)dt

= 100000
∫ 10

0 e−δttp
00
x (µ01

x+t + µ02
x+t)dt

= 100000
∫ 10

0 e−0.05te−0.006t0.006dt = 100000
∫ 10

0 e−0.056t0.006dt

= 100000× 6
56
(
1− e−0.056×10) = 4594.1886

Homework 29.8.10

Same as the last problem EXCEPT that the limitation “no further benefit is paid in the event of death after a prior
disability claim has been paid” is removed. Calculate the EPV of this policy.

Homework Solution 29.8.10

Difficulty
METHOD 1. EPV of the death benefit if the insured is healthy at death:

100000
∫ 10

0
e−δttp

00
x µ

02
x+tdt = 100000

∫ 10

0
e−0.05te−0.006t0.002dt = 100000× 2

56
(
1− e−0.56) = 1531.3962

EPV of the disability benefit if the insured is continuously disabled throughout the remainder of the 10-year term:

100000
∫ 10

0
e−δttp

00
x µ

01
x+t10−tp

11
x+tdt = 100000

∫ 10

0
e−0.05te−0.006t0.004e−(10−t)0.008dt

= 100000(0.004)e−0.08
∫ 10

0
e−0.048tdt = 100000(0.004)e−0.08 1− e−0.48

0.048 = 2932.5607

The insured will get paid twice if he walks through the path 0 → 1 → 2 during the 10-year term: (1) the disability
benefit 100,000 at t, and (2) the death benefit 100,000 at t+ u if he makes the following moves:

(a) is continuously healthy during [0, t]; prob: tp00
x = e−0.006t

(b) becomes disabled during [t, t+ dt]; prob: µ01
x+tdt = 0.004dt

(c) is continuously disabled during [t+ dt, t+ dt+ u] ≈ [t, t+ u]; prob: up11
x+t = e−0.008u

(d) moves to state 2 during [t+ u, t+ u+ du], prob: µ12
x+t+udu = 0.008du.

For each (t, u) pair where 0 < t+ u < 10, the EPV of the double payments is

g(t, u) = 100, 000(e−δt + e−δ(t+u))e−0.006t0.004e−0.008u0.008dudt

∫ 10

t=0

∫ 10−t

u=0
g(t, u) = 100, 000

∫ 10

t=0

∫ 10−t

u=0
(e−0.05t + e−0.05(t+u))e−0.006t0.004e−0.008u0.008dudt

= 100000(0.004)(0.008)
∫ 10

0
e−0.056t

(∫ 10−t

0
(1 + e−0.05u)e−0.008udu

)
dt = 240.6666

Total EPV : 1531.3962 + 2932.5607 + 240.6666 = 4704.6235
If double payments are not allowed, the EPV for death after disability is

100, 000
∫ 10

t=0

∫ 10−t

u=0
(e−0.05t + 0)e−0.006t0.004e−0.008u0.008dudt = 130.23171

Total EPV : 1531.3962 + 2932.5607 + 130.23171 = 4594.1886
METHOD 2. EPV of the death benefit if the insured is disabled at death:

100000
∫ 10

0

∫ 10−t

0
e−δ(t+u)

tp
00
x µ

01
x+tup

11
x+tµ

12
x+t+ududt = 100000

∫ 10

0

∫ 10−t

0
e−0.05(t+u)e−0.006t0.004e−0.008u0.008dudt = 110.4349

Total EPV : 4594.1886 + 110.4349 = 4704.6235
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Homework 29.8.11

A pension plan provides a benefit of 100,000 payable on
death regardless of whether death occurs before or after
retirement. The transition intensities are constants for all
ages. δ = 0.05. Calculate the EPV of this policy for an
active member currently age x.

Active Retired

Dead

0 1

2

µ01
x = 0.9

µ 02x
=

0.02 µ
12
x

=
0.0

6

Homework Solution 29.8.11

Difficulty
EPV for the path 0 → 2: 100000

∫∞
0 e−δttp

00
x µ

02
x+tdt =

100000
∫∞

0 e−0.05te−0.92t0.02dt = 2061.8557
EPV for the path 0→ 1→ 2 (the death benefit is paid

at age x+ t+ u):
100000

∫∞
0 tp

00
x µ

01
x+t
∫∞

0 e−δ(t+u)
up

11
x+tµ

12
x+t+ududt

= 100000
∫∞

0 e−0.92t0.9
∫∞

0 e−0.05(t+u)e−0.06u0.06dudt
= 100000× 0.9× 0.06

∫∞
0 e−0.97tdt

∫∞
0 e−0.11udu

= 100000× 0.9× 0.06
0.97× 0.11 = 50609.185

Total: 2061.8557+50609.185=52671.041

Homework 29.8.12

(Exam MLC: Fall 2013 Q10) Calculate the conditional
probability that a Healthy life on January 1, 2004 is still
Healthy on January 1, 2014, given that this person is not
Dead on January 1, 2014.

Healthy Disabled

Dead

0 1

2

µ01 = 0.02
µ 02

=
0.03 µ

12
=

0.0
5

Homework Solution 29.8.12

Difficulty
A =healthy today and healthy 10 years from today.
B =healthy today, disabled at some point during the next
10 years and remain disabled during the reminder of the 10
year period.
P (A) = 10p

00
x = 10p

00
x = e−(µ01+µ02)10 = e−0.05×10 =

e−0.5

P (B) =
∫ 10

0 tp
00
x µ

01
10−tp

11
x+tdt =

∫ 10
0 e−(µ01+µ02)tµ01e−µ

12(10−t)dt =∫ 10
0 e−0.05t0.02e−0.05(10−t)dt = 0.2e−0.5

P (A | A
⋃
B) = P (A)

P (A) + P (B) = 1
1 + 0.2 = 0.8333

Homework 29.8.13

(Exam MLC: Fall 2013 Q21) You are pricing an automobile
insurance on (x). The insurance pays 10,000 immediately if
(x) gets into an accident within 5 years of issue. The policy
pays only for the first accident and has no other benefits.

(i) You model (x)’s driving status as a multi-state model
with the following 3 states:

0 - low risk, without an accident
1 - high risk, without an accident
2 - has had an accident

(ii) (x) is initially in state 0.
(iii) The following transition intensities for 0 ≤ t ≤ 5

µ01
x+t = 0.20 + 0.10t
µ02
x+t = 0.05 + 0.05t
µ12
x+t = 0.15 + 0.01t2

(iv) 3p
01
x = 0.4174

(v) δ = 0.02
(vi) The continuous function g(t) is such that the ex-

pected present value of the benefit up to time a equals∫ a
0 g(t)dt, 0 ≤ a ≤ 5, where t is the time of the first

accident.

Calculate g(3).

Homework Solution 29.8.13

Difficulty
0 1

2

The most difficult task is to figure out what g(t) means.
g(t) is the EPV of the single claim at t. A claim occurs
when state 0 or 1 moves to state 2.
g(t) = 10000e−δt(tp00

x µ
02
x+t + tp

01
x µ

12
x+t)

g(3) = 10000e−3δ(3p
00
x µ

02
x+3 + 3p

01
x µ

12
x+3). You are al-

ready given 3p
01
x = 0.4174.

3p
00
x = 3p

00
x = exp

(
−
∫ 3

0 (µ01
x+t + µ02

x+t)dt
)

= exp
(
−
∫ 3

0 (0.20 + 0.10t+ 0.05 + 0.05t)dt
)

= e−1.425

3p
00
x µ

02
x+3 + 3p

01
x µ

12
x+3 = e−1.425(0.05 + 0.05 × 3) +

0.4174(0.15 + 0.01× 32) = 0.148276
g(3) = 10000e−0.02×30.148276 = 1396.4108

Homework 29.8.14

(Exam MLC: Fall 2012 Q12) A party of scientists arrives at
a remote island. Unknown to them, a hungry tyrannosaur
lives on the island. You model the future lifetimes of the
scientists as a three-state model, where:

0 - State 0: no scientists have been eaten.

1 - State 1: exactly one scientist has been eaten.

2 - State 2: at least two scientists have been eaten.

You are given:

(i) Until a scientist is eaten, they suspect nothing, so
µ01
t = 0.01 + 0.02× 2t, t > 0

(ii) Until a scientist is eaten, they suspect nothing, so
the tyrannosaur may come across two together and
eat both, with µ02

t = 0.5µ01
t , t > 0

(iii) After the first death, scientists become much more
careful, so µ12

t = 0.01, t > 0
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Calculate the probability that no scientists are eaten in the
first year.

Homework Solution 29.8.14

Difficulty
0 1

2

1p
00
x = 1p

00
x = exp

(
−
∫ 1

0 (µ01
x+t + µ02

x+t)dt
)

=

exp
(
−
∫ 1

0 1.5µ01
x+tdt

)
∫ 1

0 1.5µ01
x+tdt =

∫ 1
0 1.5(0.01 + 0.02× 2t)dt

= 1.5
(

0.01t+ 0.02× 2t

ln 2

)1

0
= 1.5

(
0.01+ 0.02

ln 2

)
= 0.05828

1p
00
x = e−0.05828 = 0.9434

Homework 29.8.15

(Exam MLC: Fall 2012 Q16) You are evaluating the finan-
cial strength of companies based on the following multiple
state model:

Solvent Bankrupt

Liquidated

0 1

2

For each company, you assume the following constant tran-
sition intensities:

(i) µ01 = 0.02
(ii) µ10 = 0.06

(iii) µ12 = 0.10
Using Kolmogorov’s forward equation with step h =
1/2, calculate the probability that a company currently
Bankrupt will be Solvent at the end of one year.

Homework Solution 29.8.15

Difficulty

d

dt
tp

10
x = tp

11
x µ

10
x+t − tp

10
x µ

01
x+t = 0.06tp11

x − 0.02tp10
x ,

d

dt
tp

10
x

∣∣∣
t=0

= 0.06(1)− 0.02(0) = 0.06,

d

dt
tp

11
x = tp

10
x µ

01
x+t − tp

11
x (µ10

x+t + µ12
x+t) = 0.02tp10

x −
0.16tp11

x ,
d

dt
tp

11
x

∣∣∣
t=0

= 0.2(0)− 0.16(1) = −0.16,

hp
10
x ≈ 0p

10
x + h

d

dt
tp

10
x

∣∣∣
t=0

= 0 + 0.06/2 = 0.03

hp
11
x ≈ 0p

11
x + h

d

dt
tp

11
x

∣∣∣
t=0

= 1− 0.16/2 = 0.92

d

dt
tp

10
x

∣∣∣
t=h

= 0.06(0.92)− 0.02(0.03) = 0.0546,

2hp
10
x ≈ hp

10
x + h

d

dt
tp

10
x

∣∣∣
t=h

= 0.03 + 0.0546/2 = 0.0573

Homework 29.8.16

The mortality is S(x) = 1 − x

100 , 0 ≤ x ≤ 100. Use

Kolmogorov’s forward equation and the step size h = 1
12 .

Calculate the probability that age 40 survives at least two
months.

Homework Solution 29.8.16

Difficulty
For a simple alive-dead model, the KM forward equation
is t+hpx ≈ tpx(1 − hµx+t). Set h = 1

12 and t = 0. Notice

that µx = 1
100− x and 0px = 1.

1
12
p40 ≈ 0p40(1 − hµ40) = 1

(
1− 1

12 ×
1

100− 40

)
=

0.998611 2
12
p40 ≈ 1

12
p40(1 − hµ40+ 1

12
) =

0.998611

(
1− 1

12 ×
1

100− 40− 1
12

)
= 0.997222

The true value is
S(40 + 2

12 )
S(40) =

1−
40 + 2

12
100

1− 40
100

=

60− 2
12

60 = 0.997222
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29.9 today’s challenge

An insurance company uses the following continuous
Markov model for pricing a combined 20-year disability,
annuity, and life insurance contract.

Healthy Disabled

Dead

0 1

2

µ10
x = 0.02

µ01
x = 0.04

µ 02x
=

0.06 µ
12
x

=
0.0

9

The policy is issued to a healthy life age (x).

The transition intensities are constants for all ages.

δ = 0.05

Calculate the EPV of each benefit separately.

Note. Not all benefits can be valued exactly. If there’s
no exact numerical solution to an EPV, just write down the
integral form for that EPV.

(A) 1000 per year payable continuously while the insured
is healthy

(B) 1000 per year payable continuously while the insured
is healthy but no payment is made if the insured is
healthy after recovering from disability

(C) 1000 payable immediately when the insured is dis-
abled

(D) 1000 payable immediately when the insured is dis-
abled for the 1st time

(E) 1000 payable immediately upon death or disability
but no death benefit is paid if there’s a prior disabil-
ity claim

(F) 1000 per year payable continuously while the insured
is disabled

(G) 1000 per year payable continuously throughout the
1st period of disability

(H) 1000 per year payable continuously throughout the
1st period of disability subject to a 6-month waiting
period

(I) 1000 payable at the moment of death and an addi-
tional 500 if the insured was disabled at death

(J) a 1000 no-claim bonus payable at the end of the term
if there’s no death or disability claim during the term
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